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1 Introduction

The Qualcomm Hexagon™ processor is a general-purpose digital signal processor designed for
high performance and low power across a wide variety of multimedia and modem applications.
V71 is a member of the sixth generation of the Hexagon processor architecture.

1.1 Conventions

Courier new fontis used for computer text and code samples, for example,
hexagon <function name> ().

The following notation is used to define command syntax:

Square brackets enclose optional items, for example, [1abel].
Bold indicates literal symbols for example, [comment].

The vertical bar character, |, indicates a choice of items.
Parentheses enclose a choice of items for example, (add|del).

An ellipsis, ..., follows items that can appear more than once.

1.2 Technical assistance

For assistance or clarification on information in this document, submit a case to Qualcomm
Technologies, Inc. (QTI) at https://createpoint.qti.qualco For assistance or clarification on
information in this document, open a technical support case at https://support.qualcomm.com/.

You will need to register for a Qualcomm ID account and your company must have support
enabled to access our Case system.

Other systems and support resources are listed on https://qualcomm.com/support.

If you need further assistance, you can send an email to qualcomm.support@qti.qualcomm.com.
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2 Registers

The Hexagon processor has two sets of registers:

m  General registers are for general-purpose computation including address generation and
scalar and vector arithmetic.

m  Control registers support special-purpose processor features such as hardware loops and
predicates.

2.1 Register operands

The following notation describes register operands in the syntax and behavior of instructions:
Rds[.elst]

The ds field indicates the register operand type and bit size (as defined in Table 2-1).

Table 2-1 Register symbols

Symbol Operand type Size (in bits)
d Destination 32
dd 64
s First source 32
ss 64
t Second source 32
tt 64
u Third source 32
uu 64
X Source and destination 32
XX 64

Examples of ds field (describing instruction syntax):

Rd = neg(Rs) // Rd -> 32-bit dest, Rs 32-bit source
Rd = xor (Rs,Rt) // Rt -> 32-bit second source
Rx = insert (Rs,Rtt) // Rx -> both source and dest

Examples of ds field (describing instruction behavior):
Rdd = Rss + Rtt // Rdd, Rss, Rtt -> 64-bit registers

80-N2040-51 Rev. AB



Qualcomm Hexagon V71 Programmer’s Reference Manual

Registers

The optional elst field (short for element size and type) specifies parts of a register when the
register is used as a vector. It can specify the following values:

m  Asigned or unsigned byte, halfword, or word within the register (as defined in Figure 2-1)

m A bit field within the register (as defined in Table 2-2).

Rds.elst
s, t, u = 32-bit source register
d = 32-bit register destination
X = 32-bit register source/destination
Rds.elst ss, tt, uu = 64-bit source register pair
A dd = 64-bit register destination
XX = 64-bit register source/destination

b[71 | .b[6] | .b[5]| .b[4]| .b[3]| .b[2] | .b[1] | .b[0] | Signed bytes

.ub[7] | .ub[6]| .ub[5]| .ub[4]| .ub[3]| .ub[2]| .ub[1]| .ub[0] Unsigned bytes

.h[3] h[2] h[1] .h[0] Signed halfwords

.uh[3] .uh[2] .uh[1] .uh[0] Unsigned halfwords
W[1] .w[0] Signed words
.uw[1] .uw[0] Unsigned words

Figure 2-1 Register field symbols

Table 2-2 Register bit field symbols
Symbol Meaning
.sN Bits [N-1:0] are treated as a N-bit signed number.

For example, R0.s16 means that the least significant 16-bits of RO
are treated as a 16-bit signed number.

.UN Bits [N-1:0] are treated as a N-bit unsigned number.

.H The most-significant 16 bits of a 32-bit register.

The least-significant 16 bits of a 32-bit register.

Examples of elst field:

EA = Rt.h[1] // .h[1] -> bit field 31:16 in Rt
Pd = (Rss.u64 > Rtt.u64d) // .u64 -> unsigned 64-bit value
Rd = mpyu(Rs.L,Rt.H) // .L/.H -> low/high 16-bit fields

The control and predicate registers use the same notation as the general registers, but are written

as Cx and Px (respectively) instead of Rx.
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2.2 General registers

The Hexagon processor has thirty-two 32-bit general-purpose registers (nhamed RO through R31),
which can be accessed either as single registers or as aligned 64-bit register pairs. The general
registers contain pointer, scalar, vector, and accumulator data. These registers store operands in
virtually all the instructions:

= Memory addresses for load/store instructions
= Data operands for arithmetic/logic instructions

m  Vector operands for vector instructions

For example:
R1 = memh (RO) // Load from address RO
R4 = add(R2,R3) // Add
R28 = vaddh (R11,R10) // Vector add halfword

R3 R2 R1 RO

R3:2 R1:0

R31 R30 R29 R28

Y Y
R31:30 R29:28

Figure 2-2 General registers

Aliased registers

Three of the general registers — R29 through R31 — support subroutines (Section 8.3.2) and the
software stack (Chapter 7). The subroutine and stack instructions implicitly modify these registers
They have symbol aliases that indicate when these registers are accessed as subroutine and stack

registers.

For example:
SP = add(SP, #-8) // SP is alias of R29
allocframe // Modifies SP (R29) and FP (R30)
call init // Modifies LR (R31)

Register pairs

The general registers can be specified as register pairs that represent a single 64-bit register. For

example:
R1:0 = memd (R3) // Load doubleword
R7:6 = valignb(R9:8,R7:6, #2) // Vector align
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Table 2-3 General register aliases

Register Alias Name Description
R29 SP Stack pointer Points to the top element of stack in memory.
R30 FP Frame pointer Points to the current procedure frame on stack.
Used by external debuggers to examine the stack
and determine call sequence, parameters, local
variables, and so on.
R31 LR Link register Stores return address of a subroutine call.

NnoTE: The first register in a register pair must always be odd-numbered, and the second must be the
next lower register.

Table 2-4 General register pairs

Register Register pair
RO R1:0
R1
R2 R3:2
R3
R4 R5:4
R5
R6 R7:6
R7
R24 R25:24
R25
R26 R27:26
R27
R28 R29:28
R29 (SP)
R30 (FP) R31:30 (LR:FP)
R31 (LR)
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2.3 Control registers

NOTE:

The Hexagon processor includes a set of 32-bit control registers that provide access to processor
features such as the program counter, hardware loops, and vector predicates.

Unlike general registers, control registers care instruction operands only in the following cases:
= Instructions that require a specific control register as an operand

m  Register transfer instructions

For example:
R2 = memw (RO++M1) // Autoincrement addressing mode (M1)
R9 = PC // Get program counter (PC)
LC1 = R3 // Set hardware loop count (LC1)

When a control register is used in a register transfer, the other operand must be a general
register.

LCO SAOQ UPCYCLELO
Loop registers Cycle count registers
LC1 SA1 UPCYCLEHI
PC Program counter FRAMELIMIT | Stack bounds register
USR | User status register FRAMEKEY Stack smash register
MO PKTCOUNTLO
Modifier registers Packet count registers
M1 PKTCOUNTHI
P3:0 | Predicate registers UTIMERLO
Qtimer registers
UGP | User general pointer UTIMERHI
GP Global pointer
CSO0
Circular start registers
CS1

Figure 2-3 Control registers
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Aliased registers

The control registers have numeric aliases (CO through C31).
Table 2-5 Aliased control registers

Register Alias Name
SAOQ Co Loop start address register 0
LCO C1 Loop count register 0
SA1 Cc2 Loop start address register 1
LC1 C3 Loop count register 1
P3:0 C4 Predicate registers 3:0
reserved C5 -
MO C6 Modifier register 0
M1 C7 Modifier register 1
USR Cc8 User status register
PC C9 Program counter
UGP C10 User general pointer
GP c1 Global pointer
CS0 C12 Circular start register 0
CS1 C13 Circular start register 1
UPCYCLELO C14 Cycle count register (low)
UPCYCLEHI C15 Cycle count register (high)
UPCYCLE C15:14 Cycle count register
FRAMELIMIT C16 Frame limit register
FRAMEKEY C17 Frame key register
PKTCOUNTLO C18 Packet count register (low)
PKTCOUNTHI C19 Packet count register (high)
PKTCOUNT C19:18 Packet count register
reserved C20-29 -
UTIMERLO C30 Qtimer register (low)
UTIMERHI C31 Qtimer register (high)
UTIMER C31:30 Qtimer register

NoTE: The control register numbers (0 through 31) specify the control registers in instruction encodings
(Chapter 10).
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Register pairs

The control registers can be specified as register pairs that represent a single 64-bit register.
Control registers specified as pairs must use their numeric aliases. For example:

Cl:0 = R5:4 // Cl:0 specifies the LCO/SAO0 register pair

noTe: The first register in a control register pair must always be odd-numbered, and the second must be
the next lower register.

Table 2-6 Control register pairs

Register Register pair
Co C1:0
C1
C2 C3:2
C3
C4 C5:4
C5
C6 C7:6
Cc7
C30 C31:30
C31

2.3.1 Program counter

The program counter (PC) register points to the next instruction packet to execute. It is modified
implicitly by instruction execution, but can be read directly. For example:

R7 = PC // Get program counter

noTe: The PC register is read-only: writing to it has no effect.

2.3.2 Loop registers

The Hexagon processor includes two sets of loop registers to support nested hardware loops
(Section 8.2). Each hardware loop is implemented with a pair of registers containing the loop
count and loop start address. The loop registers are modified implicitly by the 1oop instruction,
but are also accessed directly. For example:

loopO (start, R4) // Modifies LCO and SA0 (LCO=R4, SAO=&start)
LC1 = R22 // Set loopl count
R9 = SAl // Get loopl start address
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Table 2-7 Loop registers

Register Name Description
LCO, LC1 Loop count Number of loop iterations to execute.
SAO, SAl Loop start address Address of first instruction in loop.

2.3.3 User status register

The user status register (USR) stores processor status and control bits that are accessible by user
programs. The status bits contain the status results of certain instructions, while the control bits
contain user-settable processor modes for hardware prefetching. For example:

R9:8 = vaddw (R9:8, R3:2):sat // Vector add words
R6 = USR // Get saturation status

USR stores the following status and control values:
m  Cache prefetch enable (Section 5.10.6)

m  Cache prefetch status (Section 5.10.6)

m  Floating point modes (Section 4.3.1)

= Floating point status (Section 4.3.1)

m  Hardware loop configuration (Section 8.2)

m  Sticky saturation overflow (Section 4.2.2)

NnoTE: A user control register transfer to USR cannot be grouped in an instruction packet with a floating
point instruction (Section 4.3.1).
Whenever a transfer to USR changes the enable trap bits [29:25], an isync instruction
(Section 5.11) must execute before the new exception programming can take effect.

Table 2-8 User status register

RwW Bits Field Description
32 User status register
R 31 PFA L2 prefetch active.

1: 12fetch instruction in progress
0: 12fetch finished (or inactive)

Set when nonblocking I2fetch instruction is prefetching requested data.
Remains set until I2fetch prefetch operation completes (or inactive).

R 30 |reserved Return 0 if read.

Reserved for future expansion. To remain compatible with future processor
versions, software should always write this field with the same value read
from the field.

RW 29 | FPINEE Enable trap on IEEE inexact.
RwW 28 |FPUNFE Enable trap on IEEE underflow.
RW 27 |FPOVFE Enable trap on IEEE overflow.
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Table 2-8 User status register (cont.)

RW Bits Field Description
RW 26 |FPDBZE Enable trap on IEEE divide-by-zero.
RwW 25 |FPINVE Enable trap on IEEE invalid.
R 24 |reserved Reserved
RW | 23:22 |FPRND Rounding mode for floating-point instructions.
00: Round to nearest, ties to even (default)
01: Toward zero
10: Downward (toward negative infinity)
11: Upward (toward positive infinity)
R 21:20 |reserved Return 0 if read.
Reserved for future expansion. To remain compatible with future processor
versions, software should always write this field with the same value read
from the field.
R 19:18 |reserved Reserved
R 17 |reserved Return 0 if read.
Reserved for future expansion. To remain compatible with future processor
versions, software should always write this field with the same value read
from the field.
RW | 16:15 | HFI L1 instruction prefetch.
00: Disable
01: Enable (1 line)
10: Enable (2 lines)
RW | 14:13 |HFD L1 data cache prefetch.
Four levels are defined from disabled to aggressive. It is implementation-
defined how these levels should be interpreted.
00: disable
01: conservative
10: moderate
11: aggressive
RW 12 |PCMME Enable packet counting in Monitor mode.
RW 11 PCGME Enable packet counting in Guest mode.
RW 10 |PCUME Enable packet counting in User mode.
RW 9:8 |LPCFGE Hardware loop configuration.
Number of loop iterations (0-3) remaining before pipeline predicate should
be set.
R 7:6 |reserved Return 0 if read.
Reserved for future expansion. To remain compatible with future processor
versions, software should always write this field with the same value read
from the field.
RW 5 FPINPF Floating-point IEEE inexact sticky flag.
RW 4 FPUNFF Floating-point IEEE underflow sticky flag.
RW 3 FPOVFF Floating-point IEEE overflow sticky flag.
RW 2 FPDBZF Floating-point IEEE divide-by-zero sticky flag.
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Table 2-8 User status register (cont.)

RW Bits Field Description
RW 1 FPINVF Floating-point IEEE invalid sticky flag.
RW 0 OVF Sticky saturation overflow.

1: Saturation occurred
0: No saturation

Set when saturation occurs while executing instruction that specifies optional
saturation.

Remains set until explicitly cleared by a USR = Rs instruction.

2.3.4 Modifier registers

The following addressing modes use modifier registers (MO and M1).

Indirect autoincrement register addressing

In indirect autoincrement register addressing (Section 5.8.9), the modifier registers store a signed
32-bit value that specifies the increment (or decrement) value. For example:

M1 = RO // Set modifier register

R3 = memw (R2++M1) // Load word

Table 2-9 Modifier registers used in indirect auto-increment addressing

Register Name Description

MO, M1 Increment Signed auto-increment value.

Circular addressing

In circular addressing (Section 5.8.10) the modifier registers store the circular buffer length and

related “I” values. For example:
MO = R7 // Set modifier register
RO = memb (R2++#4:circ(M0)) // Load from circ buffer pointed
// to by R2 with buffer-size vals in MO
RO = memb (R7++I:circ(M1)) // Load from circ buffer pointed to

// by R7 with buffer-size and I vals in M1

Table 2-10 Modifier registers as used in circular addressing

Name RW Bits Field Description
MO, M1 32 Circular buffer specifier.
RW | 31:28 |1[10:7] | value (MSB - see Section 5.8.11)
RW | 27:24 0x0
RW | 23:17 |1[6:0] | value (LSB)
RW 16:0 |Length Circular buffer length
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Bit-reversed addressing

In bit-reversed addressing (Section 5.8.12) the modifier registers store a signed 32-bit value that
specifies the increment (or decrement) value. For example:

M1 = R7 // Set modifier register

R2 memub (RO++M1:brev) // Address is (RO.H | bitrev(RO.L))
// Orginal RO (not reversed) is added
// to M1l and written back to RO

Table 2-11 Modifier registers as used in bit-reversed addressing

Register Name Description

MO, M1 Increment Signed autoincrement value.

2.3.5 Predicate registers

The predicate registers (PO through P3) store the status results of the scalar and vector compare
instructions (Chapter 6). For example:

Pl = cmp.eqg(R2, R3) // Scalar compare

if (Pl) jump end // Jump to address (conditional)
R8 = P1 // Get compare status (Pl only)
P3:0 = R4 // Set compare status (P0-P3)

The four predicate registers can be specified as a register quadruple (P3:0), which represents a
single 32-bit register.
Table 2-12 Predicate registers

Register Bits Description
PO, P1,P2, P3 8 Compare status results.
P3:0 32 Compare status results.

31:24 | P3 register
23:16 | P2 register
15:8 | P1 register
7:0 PO register

note: Unlike the other control registers, the predicate registers are only eight bits wide because vector
compares return a maximum of eight status results.
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2.3.6 Circular start registers

The circular start registers (CSO through CS1) store the start address of a circular buffer in circular
addressing (Section 5.8.10). For example:

CSO0 = R5 // Set circ start register
MO = R7 // Set modifier register
RO = memb (R2++#4:circ (MO)) // Load from circ buffer pointed

// to by CSO with size/K vals in MO
Table 2-13 Circular start registers

Register Name Description

Cs0, Cs1 Circular start Circular buffer start address.

2.3.7 User general pointer register

The user general pointer (UGP) register is a general-purpose control register. For example:

R9 = UGP // Get UGP
UGP = R3 // Set UGP

note: UGP typically stores the address of thread local storage.

Table 2-14 User general pointer register

Register Name Description

UGP User general pointer General-purpose control register.

2.3.8 Global pointer

The global pointer (GP) is used in GP-relative addressing. For example:

GP = R7 // Set GP
R2 = memw (GP+#200) // GP-relative load

Table 2-15 Global pointer register

Name RW Bits Field Description
GP 32 Global pointer register
RW 31:6 |GDP Global data pointer (Section 5.8.4).
R 5:0 |reserved Return 0 if read.

Reserved for future expansion. To remain forward-
compatible with future processor versions, software
should always write this field with the same value
read from the field.
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2.3.9 Cycle count registers

The cycle count registers (UPCYCLELO through UPCYCLEHI) store a 64-bit value containing the
number of executed processor cycles since the Hexagon processor was last reset. For example:

R5 = UPCYCLEHI // Get cycle count (high)
R4 = UPCYCLELO // Get cycle count (low)
R5:4 = UPCYCLE // Get cycle count

NnoTE: The RTOS must grant permission to access these registers. Without this permission, reading these
registers from user code always returns zero.

Table 2-16 Cycle count registers

Register Name Description
UPCYCLELO Cycle count (low) Processor cycle count (low 32 bits)
UPCYCLEHI Cycle count (high) Processor cycle count (high 32 bits)

UPCYCLE Cycle count Processor cycle count (64 bits)

2.3.10 Frame limit register

The frame limit register (FRAMELIMIT) stores the low address of the memory area reserved for
the software stack (Section 7.3.1). For example:

R9 = FRAMELIMIT // Get frame limit register
FRAMELIMIT = R3 // Set frame limit register

Table 2-17 Frame limit register

Register Name Description

FRAMELIMIT Frame limit Low address of software stack area.

2.3.11 Frame key register

The frame key register (FRAMEKEY) stores the key value that XOR-scrambles return addresses
when they are stored on the software stack (Section 7.3.2). For example:

R2 = FRAMEKEY // Get frame key register
FRAMEKEY = R1 // Set frame key register

Table 2-18 Frame key register

Register Name Description

FRAMEKEY Frame key Key to scramble return addresses
stored on software stack.
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2.3.12 Packet count registers

NOTE:

The packet count registers (PKTCOUNTLO through PKTCOUNTHI) store a 64-bit value containing
the current number of instruction packets executed since a PKTCOUNT register was last written
to. For example:

R9 = PKTCOUNTHI // Get packet count (high)
R8 = PKTCOUNTLO // Get packet count (low)
R9:8 = PKTCOUNT // Get packet count

Packet counting can be configured to operate only in specific sets of processor modes (for
example, User mode only, or Guest and Monitor modes only). Bits [12:10] in the user status
register control the configuration for each mode (Section 2.3.3).

Packets with exceptions are not counted as committed packets.

Each hardware thread has its own set of packet count registers.

The RTOS must grant permission to access these registers. Without this permission, reading these
registers from user code always returns zero.

When a value is written to a PKTCOUNT register, the 64-bit packet count value is incremented
before the value is stored in the register.

Table 2-19 Packet count registers

Register Name Description

PKTCOUNTLO Packet count (low) Processor packet count (low 32 bits)

PKTCOUNTHI Packet count (high) Processor packet count (high 32 bits)

PKTCOUNT Cycle count Processor packet count (64 bits)

2.3.13 Qtimer registers

The Qtimer registers (UTIMERLO through UTIMERHI) provide access to the Qtimer global
reference count value. They enable Hexagon software to read the 64-bit time value without
having to perform an expensive AHB load. For example:

R5 = UTIMERHI // Get Qtimer reference count (high)
R4 = UTIMERLO // Get Qtimer reference count (low)
R5:4 = UTIMER // Get Qtimer reference count

These registers are read-only — they are automatically updated by hardware to always contain the
current Qtimer value.
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NoTe: The RTOS must grant permission to access these registers. Without this permission, reading these
registers from user code always returns zero.

Table 2-20 Qtimer registers

Register Name Description
UTIMERLO Qtimer (low) Qtimer global reference count (low 32 bits)
UTIMERHI Qtimer (high) Qtimer global reference count (high 32 bits)
UTIMER Qtimer Qtimer global reference count (64 bits)
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3 Instructions

Instructions can be grouped into very long instruction word (VLIW) packets for parallel execution,
with each packet containing from one to four instructions. Vector instructions operate on single
instruction multiple data (SIMD) vectors.

Instruction encoding is described in Chapter 10.

For detailed descriptions of the Hexagon processor instructions see Chapter 11.

3.1 Instruction syntax

Most Hexagon processor instructions have the following syntax:

dest = instr name (sourcel, source2,...) [:optionl][:optionZ]...

The item specified on the left-hand side (LHS) of the equation is assigned the value specified by
the right-hand side (RHS). For example:

R2 = add(R3,R1) // Add R3 and R1l, assign result to R2

Symbol Meaning Example Min Max

Assignment of RHS to LHS R2 = R3; - -

Marks the end of an instruction or group |R2 = R3; - -
of instructions

{...} Instruction packet delimiter; indicatesa | {R2 = R3; R5 = R6;} |[— -
group of parallel instructions.
(...) Source list delimiter R2 = memw (RO + #100)
0x Indicates hexadecimal number R2 = #0x1fe; - -
MEMxx Access memory. xx specifies the size R2 = MEMxx (R3) - -
and type of access.
:rnd Perform optional rounding R2 = mpy(rl.h, - -
r2.h) :rnd
:<<16 Shift left by a halfword R2 =add(rl.l,r2.1): |- -
<< 16
# Immediate constant value #100 - -
#uN Unsigned N-bit immediate value R2 = #ul6 0 2N_1
#sN Signed N-bit immediate value R2 = add(R3, #s16) _2N-1 2N-1_1
#mN Signed N-bit immediate value Rd = mpyi (Rs, #m9) -(2N-1-1) 2N-1_1
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Symbol Meaning Example Min Max
#uN:S Unsigned N-bit immediate value R2 = memh (#ul6:1) 0 (@N-1)x 28
representing integral multiples of 25 in
specified range
#sN:S Signed N-bit immediate value Rd = memw (Rs++#s4:2) [(:2N-1)x 28 | (2N-1.1)x 28
representing integral multiples of 25 in
specified range
#rN:S Same as #sN:S, but value is offset from | call #r22:2 (-2N-1)x 28 | (2N-1-1) x 2S
PC of current packet
i 32-bit immediate constant value. Same | ##2147483647 - -
as #, but associated value (u, s, m, r) is
32 bits
usaty Saturate value to unsigned N-bit usat¢ (Rs) 0 2N_1
number
saty Saturate value to signed N-bit number | sat;g (Rs) _2N-1 2N-1_1
sxt x->y Sign-extend value from x to y bits sxt32->64 (Rs) - -
zxt x->y Zero-extend value from x to y bits zxt32->64 (Rs) - -
>>> Logical right shift Rss >>> offset - -
:endloopX Loop end :endloop0
X specifies loop instruction (0 or 1)
it Direction hint (jump taken) if (PO.new) jump:t
target
:nt Direction hint (jump not taken) if (!Pl.new) jump:nt
target
:carry Predicate used as carry input and R5:4 = add(R1:0,
output R3:2, P1l):carry
<<16 Shift result left by halfword R2 = add(R1.L,
R2.L): << 16
:mem_noshuf | Inhibit load/store reordering {memw (R5) = R2;
(Section 5.5) R3 = memh (R6) }

:mem noshuf

#uN, #sN, and #mN specify immediate operands in instructions. The # symbol appears in the
actual instruction to indicate the immediate operand.

#rN specifies loop and branch destinations in instructions. In this case, the # symbol does not
appear in the actual instruction; instead, the entire #rN symbol (including its :S suffix) is expressed
as a loop or branch symbol whose numeric value is determined by the assembler and linker. For

example:

call my proc

// Instruction example

The :S suffix indicates that the S least-significant bits in a value are implied zero bits and therefore
not encoded in the instruction. The implied zero bits are called scale bits.
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For example, #s4:2 denotes a signed immediate operand represented by four bits encoded in the
instruction, and two scale bits. The possible values for this operand are -32, -28, -24, -20, -16, -12,
-8,-4,0,4, 8,12, 16, 20, 24, and 28.

## specifies a 32-bit immediate operand in an instruction (including a loop or branch destination).
The ## symbol appears in the actual instruction to indicate the operand.

Examples of operand symbols:

Rd
Rd =
call
Rd =

add (Rs, #s16)

memw (Rs++#s4:2)

#r22:2
#H#u32

// #sl6 ->
// #s4:2 —->
// #r22:2 ->
// ##u32 ->

signed 16-bit imm value

scaled signed 4-bit imm value
scaled 22-bit PC-rel addr value
unsigned 32-bit imm value

When an instruction contains more than one immediate operand, the operand symbols are
specified in upper and lower case (for example, #uNi and #UN) to indicate where they appear in

the instruction encodings.

Table 3-1 Data symbols in Hexagon processor instruction names for supported data types

Size Symbol Type
8-bit B
8-bit uB Unsigned byte
16-bit H Half word
16-bit UH Unsigned half word
32-bit W
32-bit uw Unsigned word
64-bit D Double word
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3.2 Instruction classes

The Hexagon processor instructions are assigned to specific instruction classes. Classes determine

what combinations of instructions can be written in parallel.

Instruction classes logically correspond with instruction types. For instance, the ALU32 class

contains ALU instructions that operate on 32-bit operands.

Table 3-2 Instruction classes and subclasses

Class Subclass Description
ALU32: 32-bit ALU operations ALU32 ALU Arithmetic and logical
ALU32 PERM Permute
ALU32 PRED Predicate operations

CR: Control register access, loops

JR: Jump from register (register indirect addressing mode)

J: Jumps (PC-relative addressing mode)

LD: Memory load operations

MEMOP: Memory operations

NV: New-value operations

NV J

New-value jumps

NV ST

New-value stores

ST: Memory store operations; allocate stack frame

SYSTEM: Operating system access

SYSTEM USER

Application-level access

XTYPE: 32-bit and 64-bit operations

ALU32 ALU

64-bit arithmetic and logical operations

XTYPE BIT

Bit operations

XTYPE COMPLEX

Complex math (using real and
imaginary numbers)

XTYPE FP Floating point operations

XTYPE MPY Multiply operations

XTYPE PERM Vector permute and format conversion
(pack, splat, swizzle)

XTYPE PRED Predicate operations

XTYPE SHIFT Shift operations

(with optional ALU operations)
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3.3 Instruction packets

NOTE:

Instructions can be grouped into packets of independent instructions for parallel execution, with
a packet containing from one to four instructions. Packets of varying length can be freely mixed in
a program.

Instruction packets must be explicitly specified in software. They are expressed in assembly
language by enclosing groups of instructions in curly braces. Brace characters delimit the start
and end of an instruction packet. For example:
{
R8 = memh (R3++#2)
R12 = memw (R1++#4)
R = mpy(R10,R6) :<<1l:sat
R7 = add(R9, #2)
}

Packets have restrictions on the allowable instruction combinations. The primary restriction is
determined by the instruction class of the instructions in a packet. Rules and restrictions exist on
what types of instructions can be grouped together, and in what order they can appear in the
packet. In particular, packet formation is subject to the following constraints:

m  Resource constraints determine how many instructions of a specific type can appearin a
packet. The Hexagon processor has a fixed number of execution units: each instruction
executes on a particular type of unit, and each unit can process at most one instruction at a
time. For example, because the Hexagon processor contains only two load units, an
instruction packet with three load instructions is invalid.

m  Grouping constraints are a small set of rules that apply above and beyond the resource
constraints.

m  Dependency constraints ensure that no write-after-write hazards exist in a packet.
m  Ordering constraints dictate the ordering of instructions within a packet.

m  Alignment constraints dictate the placement of packets in memory.

The Hexagon processor executes individual instructions (which are not explicitly grouped in
packets) as packets containing a single instruction.
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3.31

NOTE:

3.3.2

Packet execution semantics

Packets are defined to have parallel execution semantics. The execution behavior of a packet is
defined as follows:

m  First, instructions in the packet read their source registers in parallel.
m  Next, instructions in the packet execute.
= Finally, instructions in the packet write their destination registers in parallel.
For example, consider the following packet:
{ R2 = R3; R3 = R2; }

In the first phase, registers R3 and R2 are read from the register file. Aafter execution, R2 is
written with the old value of R3 and R3 is written with the old value of R2. The result of this
packet is that the values of R2 and R3 are swapped.

Dual stores, Dual jumps, New-value stores, New-value compare jumps, and Dot-new predicates
have non-parallel execution semantics.

Sequencing semantics

Packets of any length can freely mix in code. A packet is considered an atomic unit: in essence, a
single large instruction. From the program perspective, a packet either executes to completion or
not at all; it never executes only partially. For example, if a packet causes a memory exception,
the exception point is established before the packet.

A packet containing multiple load/store instructions can require service from the external system.
For instance, consider a packet that performs two load operations that both miss in the cache.
The packet requires the memory system to supply the data:

»  From the memory system perspective the two resulting load requests process serially.

m  From the program perspective, however, both load operations must complete before the
packet can complete.

Thus, the packet is atomic from the program perspective.

Packets have a single PC address, which is the address of the start of the packet. Branches cannot
be performed into the middle of a packet.

Architecturally, packets execute to completion — including updating all registers and memory —
before the next packet begins. As a result, application programs are not exposed to any pipeline
artifacts.
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3.3.3 Resource constraints

A packet cannot use more hardware resources than are physically available on the processor. For
instance, because the Hexagon processor has only two load units, a packet with three load
instructions is invalid. The behavior of such a packet is undefined. The assembler automatically
rejects packets that oversubscribe the hardware resources.

The processor supports up to four parallel instructions. The instructions execute in four parallel
pipelines, which are referred to as slots. The four slots are named Slot 0, Slot 1, Slot 2, and Slot 3.

NOTE: endloopN instructions (Section 8.2.2) do not use any slots.

Each instruction belongs to specific Instruction classes. For example, jumps belong to instruction
class J, while loads belong to instruction class LD. The class of an instruction determines which
slot it can execute in.

Figure 3-1 shows which instruction classes can be assigned to each of the four slots.

Slot 0 Slot1 Slot 2 Slot 3

LD instructions

ST instructions
ALUS32 instructions
MEMORP instructions
NV instructions

LD instructions
ST instructions
ALU32 instructions
Some J instructions

XTYPE instructions
ALUS32 instructions
J instructions

JR instructions
Some system

XTYPE instructions
ALU32 instructions
J instructions

CR instructions

System instructions instructions
Some J instructions
XTYPE instructions (32/64-bit) J instructions

Arithmetic, logical, bit manipulation
Multiply (integer, fractional, complex)
Floating-point operations
Permute/vector permute operations
Predicate operations

Shift / shift with add/sub/logical
Vector byte ALU

Vector halfword (ALU, shift, multiply)
Vector word (ALU, shift)

ALU32 instructions
Arithmetic/logical (32- bit)
Vector halfword

CR instructions

Control register transfers
Hardware loop setup

Predicate logicals and reductions

NV instructions

New-value jumps
New-value stores

Figure 3-1 Packet grouping combinations

Jump/call PC-relative

JR instructions
Jump/call register

LD instructions
Loads (8/16/32/64 -bit)
Deallocframe

ST instructions
Stores (8/16/32/64 -bit)
Allocframe

MEMORP instructions
Operation on memory (8/16/32 -bit)

YSTEM instruction
Prefetch
Cache maintenance
Bus operations
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3.3.4 Grouping constraints

A small number of restrictions determines what constitutes a valid packet. The assembler ensures
that packets follow valid grouping rules. If a packet executes that violates a grouping rule, the
behavior is undefined. The following rules must be followed:

Dot-new conditional instructions (Section 6.1.4) must be grouped in a packet with an
instruction that generates dot-new predicates.

ST-class instructions can be placed in Slot 1. In this case Slot 0 normally must contain a second
ST-class instruction (Section 5.4).

J-class instructions can be placed in Slots 2 or 3. However, only certain combinations of
program flow instructions (J or JR) can be grouped together in a packet (Section 8.7).
Otherwise, at most one program flow instruction is allowed in a packet. Some jump and
compare-jump instructions can execute on slots 0 or 1, excluding calls, such as the following:

o Instructions of the form Pd = cmp.xx(); if (Pd.new)jump:hint <target>
o Instructions of the form If (Pd[.new]) Jjump[:hint] <target>
o The jump<target> instruction

JR-class instructions can be placed in Slot 2. However, when encoded in a duplex, jumpr R31
can be placed in Slot O (Section 10.3).

Restrictions exist that limit the instructions that can appear in a packet at the set up or end of
a hardware loop (Section 8.2.4).

A user control register transfer to the control register USR cannot be grouped with a floating
point instruction (Section 2.3.3).

The SYSTEM-class instructions include prefetch, cache operations, bus operations, load
locked, and store conditional instructions (Section 5.10). These instructions have the
following grouping rules:

0 brkpt, trap, pause, icinva, isync, and syncht are solo instructions. They must not
be grouped with other instructions in a packet.

0 memw locked, memd locked, 12fetch, and trace must execute on Slot 0. They must
be grouped only with ALU32 or (non-FP) XTYPE instructions.

0 dccleana, dcinva, decleaninva, and dczeroa must execute on Slot 0. Slot 1 must be
empty or an ALU32 instruction.
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3.3.5 Dependency constraints

Instructions in a packet cannot write to the same destination register. The assembler
automatically flags such packets as invalid. If the processor executes a packet with two writes to
the same general register, an error exception is raised.

If the processor executes a packet that performs multiple writes to the same predicate or control
register, the behavior is undefined. Three special cases exist for this rule:

m  Conditional writes are allowed to target the same destination register only if at most one of
the writes is actually performed (Section 6.1.5).

m  The overflow flag in the status register has defined behavior when multiple instructions write
to it. Do not group instructions that write to the entire User status register (for example,
USR=R2) in a packet with any instruction that writes to a bit in the user status register.

= Multiple compare instructions are allowed to target the same predicate register to perform a
logical AND of the results (Section 6.1.3).

3.3.6 Ordering constraints

In assembly code, instructions can appear in a packet in any order (with the exception of Dual
jumps. The assembler automatically encodes instructions in the packet in the proper order.

In the binary encoding of a packet, the instructions must be ordered from Slot 3 down to Slot 0. If
the packet contains less than four instructions, any unused slot is skipped —a NOP is unnecessary
as the hardware handles the proper spacing of the instructions.

In memory, instructions in a packet must appear in decreasing slot order. Additionally, if an
instruction can go in a higher-numbered slot, and that slot is empty, it must be moved into the
higher-numbered slot.

For example, if a packet contains three instructions and Slot 1 is not used, the instructions should
be encoded in the packet as follows:

m  Slot 3 instruction at lowest address
m  Slot 2 instruction follows Slot 3 instruction

= Slot O instructions at the last (highest) address

If a packet contains a single load or store instruction, that instruction must go in Slot 0, which is
the highest address. As an example, a packet containing both LD and ALU32 instructions must be
ordered so the LD is in Slot 0 and the ALU32 in another slot.
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3.3.7 Alignment constraints

Packets have the following constraints on their placement or alighment in memory:

m  Packets must be word-aligned (32-bit). If the processor executes an improperly aligned
packet, it raises an error exception (Section 8.10).

m  Packets should not wrap the 4 GB address space. If address wraparound occurs, the processor
behavior is undefined.

No other core-based restrictions exist for code placement or alignment.

If the processor branches to a packet that crosses a 16-byte address boundary, the resulting
instruction fetch stalls for one cycle. Packets that are jump targets or loop body entries can be
explicitly aligned to ensure this does not occur (Section 8.3.5).

3.4 Instruction intrinsics

To support efficient coding of the time-critical sections of a program (without resorting to
assembly language), the C compilers support intrinsics that directly express Hexagon processor
instructions from within C code.

The following example shows how to use an instruction intrinsic to express the XTYPE instruction
“Rdd = vminh (Rtt,Rss)”:

#include <hexagon protos.h>

int main()

{
long long vl = OxFFFFOOOOFFFFOOOOLL;
long long v2 = 0x0000FFFFOOOOFFFFLL;
long long result;

// Find the minimum for each half-word in 64-bit vector
result = Q6 P vminh PP(vl,v2);
}

Intrinsics are provided for instructions in the following classes:
= ALU32

m  XTYPE

m  CR (predicate operations only)

m  SYSTEM (dcfetch only)

For more information on intrinsics see Chapter 11.
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3.5 Compound instructions

The Hexagon processor supports compound instructions, which encode pairs of commonly-used
operations in a single instruction. For example, each of the following is a single compound

instruction:

dealloc_return // Deallocate frame and return
R2 &= and(R1, RO) // And and and

R7 = add (R4, sub(#15, R3)) // Subtract and add

R3 = sub (#20, asl(R3, #16)) // Shift and subtract

R5 = add(R2, mpyi (#8, R4)) // Multiply and add

{ // Compare and Jjump

PO = cmp.eq (R2, R5)
if (PO.new) jump:nt target

{ // Register transfer and Jjump
R2 = #15
jump target

}

Using compound instructions reduces code size and improves code performance.

note: Compound instructions (with the exception of X-and-jump, as shown above) have distinct
assembly syntax from the instructions they are composed of.

3.6 Duplex instructions

To reduce code size the Hexagon processor supports duplex instructions, which encode pairs of
commonly-used instructions in a 32-bit instruction container.

Unlike Compound instructions, duplex instructions do not have distinctive syntax —in assembly
code they appear identical to the instructions they are composed of. The assembler is responsible
for recognizing when a pair of instructions can be encoded as a single duplex rather than a pair of
regular instruction words.

To fit two instructions into a single 32-bit word, duplexes are limited to a subset of the most
common instructions (load, store, branch, ALU), and the most common register operands.

For more information on duplexes, see Section 10.2 and Section 10.3.
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The Hexagon processor provides a rich set of operations for processing scalar and vector data.

This chapter presents an overview of the operations provided by the following Hexagon processor
instruction classes:

m  XTYPE — General-purpose data operations

= ALU32 - Arithmetic/logical operations on 32-bit data

noTe: For detailed descriptions of these instruction classes see Chapter 11.

4.1 Data types

The Hexagon processor provides operations for processing the following data types.

4.1.1 Fixed-point data

The Hexagon processor provides operations to process 8-, 16-, 32-, or 64-bit fixed-point data. The
data is either integer or fractional, and in signed or unsigned format.

4.1.2 Floating-point data

The Hexagon processor provides operations to process 32-bit floating-point numbers. The
numbers are stored in IEEE single-precision floating-point format.

Per the IEEE standard, certain floating-point values are defined to represent positive or negative
infinity, as well as Not-a-Number (NaN), which represents values that have no mathematical
meaning.

Floating-point numbers can be held in a general register.

4.1.3 Complex data

The Hexagon processor provides operations to process 32- or 64-bit complex data.

Complex numbers include a signed real portion and a signed imaginary portion. Given two
complex numbers (a + bi) and (c + di), the complex multiply operations computes both the real
portion (ac - bd) and the imaginary portion (ad + bc) in a single instruction.
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Complex numbers can be packed in a general register or register pair. When packed, the
imaginary portion occupies the most-significant portion of the register or register pair.

4.1.4 Vector data

The Hexagon processor provides operations to process 64-bit vector data.

Vector data types pack multiple data items — bytes, halfwords, or words — into 64-bit registers.
Vector data operations are common in video and image processing.

Eight 8-bit bytes can be packed into a 64-bit register.
note: Certain vector operations support automatic scaling, saturation, and rounding.

For example, the following instruction performs a vector operation:
R1:0 += vrmpyh (R3:2,R5:4)

It is defined to perform the following operations in one cycle:

R1:0 += ((R2.L * R4.L) +
(R2.H * R4.H) +
(R3.L * R5.L) +
(R3.H * R5.H)

Rit
YYVYVYY VY VY VY VYVY VY VY VY VY
(O 1 Op (Op ) Op ) Op J_ Op J_ Op S Op )
AR S S T R N

Rdd

Figure 4-1 Vector byte operation

Four 16-bit halfword values can be packed in a single 64-bit register pair.
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Rss
Rtt
A / / / A4 A4 ) J i
o ) o J( o ) o )
¢ 4 4 ) J
Rdd
Figure 4-2 Vector halfword operation
Two 32-bit word values can be packed in a single 64-bit register pair.
Rss
Rtt
/ / A4 A4
(oe ) (o )
4 A4
Rdd

Figure 4-3 Vector word operation

4.2 Instruction options

421

Some instructions support optional scaling, saturation, and rounding. There are no mode bits
controlling these options — instead, they are explicitly specified as part of the instruction name.
The options are described in this section.

Fractional scaling

In fractional data format, data is treated as fixed-point fractional values whose range is
determined by the word length and radix point position.

Fractional scaling is specified in an instruction by adding the :<<1 specifier. For example:

R3:2 = cmpy (RO,R1) :<<1:sat
When two fractional numbers are multiplied, the product must be scaled to restore the original
fractional data format. The Hexagon processor allows specification of the fractional scaling of the

product in the instruction for shifts of 0 and 1. Perform a shift of 1 for Q1.15 numbers, perform a
shift of 0 for integer multiplication.
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4.2.2 Saturation

Certain instructions are available in saturating form. If a saturating arithmetic instruction has a
result that is smaller than the minimum value, the result is set to the minimum value. Similarly, if
the operation has a result that is greater than the maximum value, the result is set to the
maximum value.

Saturation is specified in an instruction by adding the :sat specifier. For example:
R2 = abs(R1l) :sat

The OVF bit in the User status register is set whenever a saturating operation saturates to the
maximum or minimum value. It remains set until explicitly cleared by a control register transfer to
USR. For vector-type saturating operations, if any of the individual elements of the vector
saturate, OVF is set.

4.2.3 Arithmetic rounding

Certain signed multiply instructions support optional arithmetic rounding (also known as biased
rounding). The arithmetic rounding operation takes a double precision fractional value and adds
0x8000 to the low 16-bits (least significant 16-bit halfword).

Rounding is specified in an instruction by adding the :rnd specifier. For example:

R2 = mpy(R1.h,R2.h) :rnd

noTE: Arithmetic rounding can accumulate numerical errors, especially when the number to round is
exactly 0.5. This happens most frequently when dividing by 2 or averaging.

4.2.4 Convergent rounding

To address the problem of error accumulation in Arithmetic rounding, the Hexagon processor
includes four instructions that support positive and negative averaging with a convergent
rounding option.

These instructions work as follows:

1. Compute (A+B) or (A-B) for AVG and NAVG respectively.

2. Based on the two least-significant bits of the result, add a rounding constant as follows:
g Ifthetwo LSBs are 00, add O
g Ifthetwo LSBsare01,addO
g Ifthetwo LSBs are 10, add 0
o Ifthetwo LSBsare 11, add 1

3. Shift the result right by one bit.
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4.2.5 Scaling for divide and square-root

On the Hexagon processor, floating point divide and square-root operations are implemented in
software using library functions. To enable the efficient implementation of these operations, the
processor supports special variants of the multiply-accumulate instruction. These are named
scale FMA.

Scale FMA supports optional scaling of the product generated by the floating-point fused
multiply-add instruction.

Scaling is specified in the instruction by adding the :scale specifier and a predicate register
operand. For example:

R3 += sfmpy (RO,R1,P2) :scale
For single precision, the scaling factor is two raised to the power specified by the contents of the

predicate register (which is treated as an 8-bit two's complement value). For double precision, the
predicate register value is doubled before use as a power of two.

noTe: Do not use Scale FMA instructions outside of divide and square-root library routines. No
guarantee is provided that future versions of the Hexagon processor will implement these
instructions using the same semantics. Future versions assume only that compatibility for scale
FMA is limited to the needs of divide and square-root library routines.

4.3 XTYPE operations

The XTYPE instruction class includes most of the data-processing operations performed by the
Hexagon processor. These operations are categorized by their operation type.

4.3.1 Floating point

Floating-point operations manipulate single-precision floating point numbers.

The Hexagon floating-point operations are defined to support the IEEE floating-point standard.
However, certain IEEE-required operations — such as divide and square root — are not supported
directly. Instead, special instructions are defined to support the implementation of the required
operations as library routines. These instructions include:

m  Aspecial version of the fused multiply-add instruction (designed specifically for use in library
routines)

= Reciprocal/square root approximations (which compute the approximate initial values used in
reciprocal and reciprocal-square-root routines)

m  Extreme value assistance (which adjusts input values if they cannot produce correct results
using convergence algorithms)

For more information see Section 11.10.4.

noTe: The special floating-point instructions are not intended for use directly in user code — they should
be used only in the floating point library.
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Format conversion

The floating-point conversion instructions sfmake and dfmake convert an unsigned 10-bit
immediate value into the corresponding floating-point value.

The immediate value must be encoded so bits [5:0] contain the significand, and bits [9:6] the
exponent. The exponent value is added to the initial exponent value (bias - 6).

For example, to generate the single-precision floating point value 2.0, bits [5:0] must be set to O,
and bits [9:6] set to 7. Performing sfmake on this immediate value yields the floating point value
0x40000000, which is 2.0.

NoTE: The conversion instructions are designed to handle common floating point values, including most
integers and many basic fractions (1/2, 3/4, and so on).

Rounding

The Hexagon User status register includes the FPRND field, which specifies the IEEE-defined
floating-point rounding mode.

Exceptions

The Hexagon User status register includes five status fields, which work as sticky flags for the five
IEEE-defined exception conditions: inexact, overflow, underflow, divide by zero, and invalid. A
sticky flag is set when the corresponding exception occurs, and remains set until explicitly
cleared.

The user status register also includes five mode fields that specify whether to perform an
operating system trap if one of the floating-point exceptions occur. For every instruction packet
that contains a floating point operation, if a floating point sticky flag and the corresponding trap-
enable bit are both set, a floating-point trap is generated. After the packet commits, the Hexagon
processor automatically traps to the operating system.

note: Non-floating-point instructions never generate a floating point trap, regardless of the state of the
sticky flag and trap-enable bits.

4.3.2 Multiply

Multiply operations support fixed-point multiplication, including both single- and double-
precision multiplication, and polynomial multiplication.

Single precision

In single-precision arithmetic, a 16-bit value is multiplied by another 16-bit value. These operands
can come from the high portion or low portion of any register. Depending on the instruction, the
result of the 16 X 16 operation can optionally be accumulated, saturated, rounded, or shifted left
by 0 to 1 bits.

The instruction set supports operations on signed X signed, unsigned X unsigned, and signed X
unsigned data.
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Table 4-1 shows the options available for 16 X 16 single precision multiplications. The symbols
used in the table are as follows:

m  SS - Perform signed X signed multiply

m  UU - Perform unsigned X unsigned multiply

m  SU—Perform signed X unsigned multiply

= A+ —Result added to accumulator

m  A-—Result subtracted from accumulator

m 0 -—Result not added to accumulator

Table 4-1 Single-precision multiply options

Multiply Result Sign Accumulate Sat Rnd Scale
16 x16 32 SS A+, A- Yes No 0-1
16 x16 32 SS 0 Yes Yes 0-1
16 x16 64 SS A+, A- No No 0-1
16 x16 64 SS 0 No Yes 0-1
16 x16 32 uu A+, A- 0 No No 0-1
16 x16 64 uu A+, A-, 0 No No 0-1
116 x16 32 SuU A+, 0 Yes No 0-1

Double precision

Double precision instructions are available for both 32 x 32 and 32 x 16 multiplication:

m  For 32 x 32 multiplication, the result is either 64 or 32 bits. The 32-bit result is either the high

or low portion of the 64-bit product.

m  For 32 X 16 multiplication the result is always taken as the upper 32 bits.

The operands are either signed or unsigned.

Table 4-2 Double precision multiply options

Multiply Result Sign Accumulate Sat Rnd Scale

32 x 32 64 SS, UU A+ A-, 0 No No

32 %32 32 (upper) SS, UU 0 No Yes

32 x 32 32 (low) SS, uU A+, 0 No No

32 x16 32 (upper) SS, UuU A+, 0 Yes Yes 0-1

32 x 32 32 (upper) SuU 0 No No
Polynomial

Polynomial multiply instructions are available for both words and vector halfwords.

These instructions are useful for many algorithms including scramble code generation,

cryptographic algorithms, convolutional, and Reed Solomon code.
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For more information on multiply operations, see Section 11.10.5.

4.3.3 Shift

Scalar shift operations perform a variety of 32 and 64-bit shifts followed by an optional add/sub
or logical operation. Figure 4-4 shows the general operation.

Rss
#/Rt
Shift
amount
4
< 64-bit shifter )
64-bit add/sub/logical

— Rxx

Figure 4-4 64-bit shift and add/subl/logical

Four shift types are supported:
m  ASR — Arithmetic shift right
= ASL - Arithmetic shift left

m  LSR - Logical shift right

m  LSL - Logical shift left

In register-based shifts, the Rt register is a signed two’s-complement number. If this value is
positive, the instruction opcode tells the direction of shift (right or left). If this value is negative,
the shift direction indicated by the opcode is reversed.

When arithmetic right shifts are performed, the sign bit is shifted in, whereas logical right shifts
shift in zeros. Left shifts always shift in zeros.

Some shifts are available with saturation and rounding options.

For more information see Section 11.10.8.
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4.4 ALU32 operations

The ALU32 instruction class includes general arithmetic/logical operations on 32-bit data.
noTe: ALU32 instructions can execute on any slot (Section 3.3.3).

Chapter 6 describes the conditional execution and compare instructions.

4.5 Vector operations

Vector operations support arithmetic operations on vectors of bytes, halfwords, and words.

The vector operations belong to the XTYPE instruction class (except for vector add, subtract, and
average halfwords, which are ALU32).

Vector byte operations

The vector byte operations process packed vectors of signed or unsigned bytes. Vector halfword
operations

The vector halfword operations process packed 16-bit halfwords. Vector shift halfwords

For example, Figure 4-5 shows the operation of the vector arithmetic shift right halfword (vasrh)
instruction. In this instruction, each 16-bit half-word is shifted right by the same amount that is
specified in a register or with an immediate value. Because the shift is arithmetic, the bits shifted
in are copies of the sign bit.

Shift amount Rt / #u4

‘ lost ‘ ‘ lost ‘ ‘ lost ‘ ‘ Iost‘ Rss

gz ext F/z ext ‘ F/z e#t F/z ext “ Rdd

Figure 4-5 Vector halfword shift right

Vector word operations
The vector word operations process packed vectors of two words.

For more information on vector operations, see Section 11.1.1 and Section 11.10.1.
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4.6 CR operations

The CR instruction class includes operations that access the Control registers.
Table 4-3 lists the instructions that access the control registers.

Table 4-3 Control register transfer instructions

Syntax Operation
Rd = Cs Move control register to / from a general register.
Cd = Rs
note: PCis not a valid destination register.
Rdd = Css Move control register pair to / from a general register pair.
Cdd = Rss

note: PCis not a valid destination register.

NoTE: In register-pair transfers, Control registers must be specified using their numeric alias names.

For more information see Section 11.2.

4.7 Compound operations
The instruction set includes some instructions that perform multiple logical or arithmetic
operations in a single instruction. They include the following operations:
= AND/OR with inverted input
m  Compound logical register
m  Compound logical predicate
m  Compound add-subtract with immediates
m  Compound shift-operation with immediates (arithmetic or logical)

m  Multiply-add with immediates

For more information see Section 11.10.1.
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4.8 Special operations

4.8.1

The instruction set includes some special-purpose instructions to support specific applications.

H.264 CABAC processing

H.264 or advanced video coding (AVC) is used in a diverse range of multimedia applications, for
example, full HD video and audio.

Context adaptive binary arithmetic coding (CABAC) is one of the two alternative entropy coding
methods specified in the H.264 main profile. CABAC offers superior coding efficiency at the
expense of greater computational complexity. The Hexagon processor includes a dedicated
instruction (decbin) to support CABAC decoding.

Binary arithmetic coding is based on the principle of recursive interval subdivision, and its state is
characterized by two quantities:

m  The current interval range

m  The current offset in the current code interval

The offset is read from the encoded bit stream. When decoding a bin, the interval range is
subdivided in two intervals based on the estimation of the probability , ps of LPS: one interval
with width of rLPS = range x pLPS, and another with width of rMPS = range x pMPS = range -rLPS,
where LPS stands for least probable symbol, and MPS for most probable symbol.

Depending on the subinterval that the offset falls into, the decoder decides whether the bin is
decoded as MPS or LPS, after which the two quantities are iteratively updated, as shown in
Figure 4-1.

MPS occurs LPS occurs

LPS 1! LPS

range
range

rMPS rMPS

offset
offset

rangeNew = rMPS rangeNew = rLPS
offsetNew = offset oftsetNew = offset-rMPS

Figure 4-1 Arithmetic decoding for one bin
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4.8.1.1 CABAC implementation

In H.264 range is a 9-bit quantity, and offset is 9 bits in regular mode and 10 bits in bypass mode
during the whole decoding process. The calculation of rLPS is approximated by a 64 x 4 table of
256 bytes, where the range and the context state (selected for the bin to decode) address the
lookup table. To maintain the precision of the whole decoding process, the new range must
renormalize to ensure that the most significant bit is always 1, and that the offset is
synchronously refilled from the bit stream.

To simplify the renormalization/refilling process, the decoding scheme shown in Figure 4-2
significantly reduces the frequency of renormalization and refilling bits from the bit-stream, while
also being suitable for DSP implementation.

range 32 bit register 18 29-bitpos——p

0 0000 0001 XxxX XXXX 0000 0000 0000
bitpos=1 1—;[4— 12=23-bitpos—

offset: 32 bit register
0000 0000 000X XXXX XXXX XXXX XXXX XXXX

Decode decision
(ctxldx, range, offset)

A 4

Bitpos = Count_leading_zeros(range)
rLPS=lutLPS][ctxldx->state][(range>>(29-bitpos))&3]<<(23-bitpos)
rMPS = range-rLPS

—

bin = Ictxldx->valMPS
range = rLPS
offset = offset - IMPS

bin = ctxldx->valMPS
range = rMPS

]

ctxldx->state ==

Yesl

ctxldx->valMPS =! ctxldx->valMPS

No
l \ 4
ctxldx->state = P ctxldx->state =
TransindexLPS(ctxldx->state) - TransIndexMPS(ctxldx->state)

v

Renormalization1
(range, offset)

Figure 4-2 CABAC decoding engine for regular bin
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The Hexagon processor can use the decbin instruction to decode one regular bin in two cycles

(not counting the bin refilling process).
For more information on the decbin instruction see Section 11.10.6.

For example:

Rdd = decbin(Rss,Rtt)

INPUT: Rss and Rtt register pairs as:

Rtt.wl[5:0] = state
Rtt.wl[8] = valMPS
Rtt.w0[4:0] = bitpos
Rss.w0 = range

Rss.wl = offset

OUTPUT: Rdd register pair is packed as

Rdd.w0[5:0] = state
Rdd.w0[8] = wvalMPS
Rdd.w0[31:23] = range
Rdd.w0[22:16] = '0'

Rdd.wl = offset (normalized)
OUTPUT: PO

PO = (bin)

4.8.1.2 Code example

H264CabacGetBinNC:

/****************************************************************

* Nonconventional call:
Input: R1:0 = offset : range, R2 = dep, R3 = ctxIdx,
R4 = (*ctxIdx), R5 = bitpos

Rl: 0 - offset : range

*
*
*
* Return:
*
* PO - (bin)
*

*k*******************************k**k******************************/

// Cycle #1
{ R1:0= decbin(R1:0,R5:4) // Decoding one bin
R6 = asl (R22,R5) // where R22 = 0x100

// Cycle #2

{ memb (R3) = RO // Save context to *ctxIdx
R1:0 = vlsrw(R1:0,R5) // Realign range and offset
Pl = cmp.gtu(R6,R1) // Need refill? i.e., Pl= (range<0x100)

IF (!Pl.new) jumpr:t LR // Return

}
RENORM REFILL:
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4.8.2 IP Internet checksum

The key features of the Internet checksum? include:
m  The checksum can be summed in any order

m  Carries can be accumulated using an accumulator larger than size being added, and added
back in at any time

Using standard data-processing instructions, the Internet checksum can be computed at 8 bytes
per cycle in the main loop, by loading words and accumulating into doublewords. After the loop,
the upper word is added to the lower word; then the upper halfword is added to the lower
halfword, and any carries are added back in.

The Hexagon processor supports a dedicated instruction (vradduh) that computes the Internet
checksum at a rate of 16 bytes per cycle.

The vradduh instruction accepts the halfwords of the two input vectors, adds them all together,
and places the result in a 32-bit destination register. This operation can both compute the sum of
16 bytes of input while preserving the carries, and accumulate carries at the end of computation.

For more information on the vradduh instruction, see Vector reduce add halfwords.

NoTE: This operation utilizes the maximum load bandwidth available in the Hexagon processor.

4.8.2.1 Code example

.text

.global fast ip check

// Assumes data is 8-byte aligned

// Assumes data is padded at least 16 bytes afterwords with 0's.
// Input RO points to data

// Input R1 is length of data

// Returns IP checksum in RO

fast ip check:
{
R1 = 1sr(R1, #4) // l6-byte chunks, rounded down, +1
R9:8 = combine (#0, #0)
R3:2 = combine (#0, #0)

loopO(1£f,R1)
R7:6 = memd (RO+#8)

R5:4 = memd (RO++#16)

}

.falign

1:

{
R7:6 = memd (RO+#8)
R5:4 = memd (RO++#16)
R2 = vradduh (R5:4,R7:6) // Accumulate 8 halfwords

1 See RFC 1071 (http://www.fags.org/rfcs/rfc1071.html)
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R8 = vradduh (R3:2,R9:8) // Accumulate carries
} :endloop0
// Drain pipeline
{

R2 = vradduh (R5:4,R7:0)

R8 vradduh (R3:2,R9:8)

R5:4 = combine (#0, #0)

R8 = vradduh (R3:2,R9:8)
R1 = #0

// May have some carries to add back in
RO = vradduh (R5:4,R9:8)

// Possible for one more to pop out
RO = vradduh (R5:4,R1:0)

RO = not (RO)
jumpr LR

4.8.3 Software-defined radio

The Hexagon processor includes six special-purpose instructions that support the implementation
of software-defined radio. The instructions greatly accelerate the following algorithms:

m  Rake despreading
m  Scramble code generation

m  Polynomial field processing

4.8.3.1 Rake despreading

A fundamental operation in despreading is the PN multiply operation. This operation compares
the received complex chips against a pseudo-random sequence of QAM constellation points and
accumulated.

80-N2040-51 Rev. AB 57



Qualcomm Hexagon V71 Programmer’s Reference Manual Data processing

Figure 4-3 shows the vrcrotate instruction that performs this operation. The products are
summed to form a soft 32-bit complex symbol. The instruction has both accumulating and non-
accumulating versions.

Rxx += vrcrotate(Rss,Rt,#0)

Rt

Im3|| Re3 | ImJ Re2 | Im Re1 | ImO || Re0 Rss

I R Rxx

Figure 4-3 Vector reduce complex rotate

For more information on the vrcrotate instruction, see Vector reduce complex rotate.

note: Using this instruction, the Hexagon processor can process 5.3 chips per cycle, and a 12-finger
WCDMA user requires only 15 MHz.

4.8.3.2 Polynomial operations

The polynomial multiply instructions support the following operations:

m  Scramble code generation (at a rate of 8 symbols per cycle for WCDMA)
m  Cryptographic algorithms (such as Elliptic Curve)

m  CRCchecks (at a rate of 21 bits per cycle)

m  Convolutional encoding

m  Reed Solomon codes
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The versions of this instruction support 32 x 32 and vector 16 x 16 multiplication, both with and

without accumulation, as shown in Figure 4-4.

Rxx += pmpyw(Rs,Rt)

Rs

Rt

3232 Y
carryless
polynomial

multiply

C o)
y

Rxx += vpmpyh(Rs,Rt)

Rs
Rt
16 " 16 ]
carryless 16 " 16
polynomial Carrylegs
multiply polynomial
multiply

(xor)
]

ol

Rxx

Figure 4-4

For more information on the pmpy instructions, see Polynomial multiply words and Vector

polynomial multiply halfwords.

Polynomial multiply
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5 Memory

The Hexagon processor features a load/store architecture, where numeric and logical instructions
operate on registers. Explicit load instructions move operands from memory to registers, while
store instructions move operands from registers to memory. A small number of instructions
(known as mem-ops) perform numeric and logical operations directly on memory.

The address space is unified: all accesses target the same linear address space, which contains
both instructions and data.

5.1 Memory model for the Hexagon processor

5.1.1 Address space

The Hexagon processor has a 32-bit byte-addressable memory address space. The entire 4G
linear address space is addressable by the user application. A virtual-to-physical address
translation mechanism is handled by a resident OS. Virtual memory supports the implementation
of memory management and memory protection in a hardware-independent manner.

5.1.2 Byte order

The Hexagon processor is a little-endian machine: the lowest address byte in memory is held in
the least significant byte of a register, as shown in Figure 5-1.

Address Contents

0 A Register contents
1 B
31 0

2 c - | - | - | A | Load byte
3 D
4 E - | - | B | A |Load halfword
5 F

D|C|B| A | Loadword
6 G 63
7 H H|{G|F|E|D|C| B/ | A | Loaddoubleword

Figure 5-1 Hexagon processor byte order
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5.1.3 Alignment

Even though the Hexagon processor memory is byte-addressable, instructions and data must
align in memory on specific address boundaries:

m  Instructions and instruction packets must be 32-bit aligned

m  Data must be aligned to its native access size.

Any unaligned memory access causes a memory-alignment exception.

Use the permute instructions in applications that must reference unaligned vector data. The loads
and stores still must be memory-aligned; however, the permute instructions enable easy
rearrangement of the data in registers.

Table 5-1 Memory alignment restrictions

Instruction packet

Data type Size (bits) Exception when
Byte 8 Never
unsigned byte
Halfword 16 LSB[0]!=01
unsigned halfword
Word 32 LSBI[1:0] = 00
unsigned word
Doubleword 64 LSB[2:0] = 000
Instruction 32 LSB[1:0] =00

1 LSB = Least significant bits of address

5.2 Memory loads

Memory is loaded in byte, halfword, word, or doubleword sizes. The data types supported are
signed or unsigned. The syntax used is memxx, where xx denotes the data type.

Table 5-2 Load instructions

Syntax Sour(?e size D(?stina_tion Data Comment
(bits) size (bits) placement

Rd = memub (Rs) 8 32 Low 8 bits Zero-extend 8 to 32 bits
Rd = memb (Rs) 8 32 Low 8 bits Sign-extend 8 to 32 bits
Rd = memuh (Rs) 16 32 Low 16 bits Zero-extend 16 to 32 bits
Rd = memh (Rs) 16 32 Low 16 bits Sign-extend 16 to 32 bits
Rd = memubh (Rs) 16 32 Bytes 0 and 2 Bytes 1 and 3 zeroed '
Rd = membh (Rs) 16 32 Bytes 0 and 2 Bytes 1 and 3 sign-extended
Rd = memw (Rs) 32 32 All 32 bits Load word
Rdd = memubh (Rs) 32 64 Bytes 0,2,4,6 Bytes 1,3,5,7 zeroed
Rdd = membh (Rs) 32 64 Bytes 0,2,4,6 Bytes 1,3,5,7 sign-extended
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Table 5-2 Load instructions

Syntax Sourc_:e size Dt?stina_tion Data Comment
(bits) size (bits) placement
Rdd = memd (Rs) 64 64 All 64 bits Load doubleword
Ryy = memh fifo (Rs) 16 64 High 16 bits Shift vector and load halfword
deallocframe 64 64 All 64 bits See Chapter 7
dealloc_return 64 64 All 64 bits See Chapter 7

N

The memubh and membh instructions load contiguous bytes from memory (either 2 or 4 bytes) and unpack these bytes into a
vector of halfwords. The instructions are useful when bytes are used as input into halfword vector operations, which is common in

video and image processing..

NoTE: The memory load instructions belong to instruction class LD, and execute only in Slots 0 or 1.

5.3 Memory stores

Memory is stored in byte, halfword, word, or doubleword sizes. The syntax used is memx, where x
denotes the data type.

Table 5-3 Store instructions

Source Destination
Syntax size size Comment
(bits) (bits)
memb (Rs) = Rt 32 8 Store byte (bits 7:0)
memb (Rs) = #s8 8 8 Store byte
memh (Rs) = Rt 32 16 Store lower half (bits 15:0)
memh (Rs) = Rt.H 32 16 Store upper half (bits 31:16)
memh (Rs) = #s8 8 16 Sign-extend 8 to 16 bits
memw (Rs) = Rt 32 32 Store word
memw (Rs) = #s8 8 32 Sign-extend 8 to 32 bits
memd (Rs) = Rtt 64 64 Store doubleword
allocframe (#ull) 64 64 See Chapter 7

NoTE: The memory store instructions belong to instruction class ST, and execute only in slot 0 or when
part of a dual store (Section 5.4) slot 1.
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5.4 Dual stores

NOTE:

Two memory store instructions can appear in the same instruction packet. The resulting
operation is considered a dual store. For example:
{
memw (R5) = R2 // dual store
memh (R6) = R3
}

Unlike most packetized operations, dual stores do not execute in parallel (Section 3.3.1). Instead,

the store instruction in Slot 1 effectively executes first, followed by the store instruction in Slot 0.

The store instructions in a dual store must belong to instruction class ST (Section 5.3), and
execute only in Slots 0 and 1.

5.5 Slot 1 store with slot 0 load

A slot 1 store operation with a slot O load operation can appear in a packet. The packet attribute
:mem_noshuf inhibits the instruction reordering that would otherwise be done by the assembler.
For example:

{
memw (R5) = R2 // Slot 1 store
R3 = memh (R6) // Slot 0 load
} :mem noshuf

Unlike most packetized operations, these memory operations do not execute in parallel
(Section 3.3.1). Instead, the store instruction in slot 1 executes first, followed by the load
instruction in Slot 0. If the addresses of the two operations overlap, the load receives the newly
stored data. This feature is supported in processor versions V65 or greater.

5.6 New-value stores

A memory store instruction can store a register that is assigned a new value in the same
instruction packet (Section 3.3). This feature is expressed in assembly language by appending the
suffix . new to the source register. In many cases, a predicate or general register are both
generated and used in the same instruction packet. This feature is expressed in assembly
language by appending the suffix .new to the specified register.

For example:
{
R2 = memh (R4+#8) // Load halfword
memw (R5) = R2.new // Store newly-loaded value

}
New-value store instructions have the following restrictions:

= If aninstruction uses auto-increment or absolute-set Addressing modes, its address register
cannot be the new-value register.

= If aninstruction produces a 64-bit result, its result registers cannot be the new-value register.
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= If the instruction that sets a new-value register is conditional (Section 6.1.2), it must always

execute.

NoTE: The new-value store instructions belong to instruction class NV, and execute only in Slot 0.

5.7 Mem-ops

Mem-ops perform basic arithmetic, logical, and bit operations directly on memory operands,
without the need for a separate load or store. Mem-ops are performed on byte, halfword, or

word sizes.

Table 5-4 Mem-ops

Syntax Operation
memXX (Rs+#u6) [+-]&] = Rt Arithmetic/logical on memory
memXX (Rs+#u6) [+-] = #ub Arithmetic on memory
memXX (Rs+#u6) = clrbit (#ub) Clear bit in memory
memXX (Rs+#u6) = setbit (#ub) Set bit in memory

NoTE: The mem-op instructions belong to instruction class MEMOP, and execute only in Slot 0.

5.8 Addressing modes

Table 5-5 Addressing modes supported by the Hexagon processor

Mode Syntax Operation 1
32-bit absolute memXX (##address) EA = address
32-bit absolute-set memXX (Re=##address) EA = address
Re = address
Absolute with register offset memXX (Ru<<#u2+##U32) EA = imm + (Ru << #u2)

Global-pointer-relative

memXX (GP+#immediate)
memXX (#immediate)

EA = GP + immediate

Indirect

memXX (Rs)

EA = Rs

Indirect with offset

memXX (Rs+#s11)

EA = Rs + imm

with autoincrement immediate

Indirect with register offset memXX (Rs+Ru<<#u2) EA = Rs + (Ru << #u2)
Indirect memXX (Rx++#s4) EA = Rx;
with autoincrement immediate Rx += (imm)
Indirect memXX (Rx++Mu) EA = Rx;
with autoincrement register Rx += Mu
Circular memXX (Rx++#sd:circ (Mu)) EA = Rx;
Rx = circ_add(Rx, imm, Mu)
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Table 5-5 Addressing modes supported by the Hexagon processor

Mode Syntax Operation 1
Circular memXX (Rx++I:circ (Mu)) EA = Rx;
with autoincrement register Rx = circ_add(Rx, I,Mu)
Bit-reversed memXX (Rx++Mu:brev) EA = Rx.H + bit reverse(Rx.L)
Rx += Mu

with autoincrement register

1 EA (Effective Address) is equivalent to VA (Virtual Address).

5.8.1 Absolute

The absolute addressing mode uses a 32-bit constant value as the effective memory address. For
example:

R2 = memw (##100000) // Load R2 with word from addr 100000
memw (##200000) = R4 // Store R4 to word at addr 200000

5.8.2 Absolute-set

The absolute-set addressing mode assigns a 32-bit constant value to the specified general
register, then uses the assigned value as the effective memory address. For example:

R2 = memw (R1=##400000) // Load R2 with word from addr 400000
// and load R1 with value 400000
memw (R3=##600000) = R4 // Store R4 to word at addr 600000

// and load R3 with value 600000

5.8.3 Absolute with register offset

NOTE:

The absolute with register offset addressing mode performs an arithmetic left shift of a 32-bit
general register value by the amount specified in a 2-bit unsigned immediate value, and then
adds the shifted result to an unsigned 32-bit constant value to create the 32-bit effective memory
address. For example:

R2 = memh(R3 << #3 + ##100000) // Load R2 with signed halfword
// from addr [100000 + (R3 << 3)]

The 32-bit constant value is the base address, and the shifted result is the byte offset.

This addressing mode is useful for loading an element from a global table, where the immediate
value is the name of the table, and the register holds the index of the element.
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5.8.4 Global pointer relative

The global pointer relative addressing mode adds an unsigned offset value to the Hexagon
processor global data pointer GP to create the 32-bit effective memory address. This addressing
mode accesses global and static data in C.

Global pointer relative addresses can be expressed two ways in assembly language:
m By explicitly adding an unsigned offset value to register Gp

m By specifying only an immediate value as the instruction operand

For example:

R2 = memh (GP+#100) // Load R2 with signed halfword
// from [GP + 100 bytes]

R3 = memh (#2000) // Load R3 with signed halfword
// from [GP + #2000 - SDA BASE]

Specifying only an immediate value causes the assembler and linker to automatically subtract the
value of the special symbol spa BaASE from the immediate value, and use the result as the
effective offset from Gp.

The global data pointer is programmed in the GDP field of register Gp (Section 2.3.8). This field
contains an unsigned 26-bit value that specifies the most significant 26 bits of the 32-bit global
data pointer. The least significant 6 bits of the pointer are always defined as zero.

The memory area referenced by the global data pointer is known as the global data area. It can
be up to 512 kB in length, and — because of the way the global data pointer is defined — must align
to a 64-byte boundary in virtual memory.

When expressed in assembly language, the offset values used in global pointer relative addressing
always specify byte offsets from the global data pointer. The offsets must be integral multiples of
the size of the instruction data type.

Table 5-6 Offset ranges (global pointer relative)

Data type Offset range Oﬁ::ztlt:::les:)?e
doubleword 0...524280 8
word 0...262140 4
halfword 0...131070 2
byte 0...65535 1

note: When using global pointer relative addressing, the immediate operand should be a symbol in the
.sdata or .sbss section to ensure that the offset is valid.

5.8.5 Indirect

The indirect addressing mode uses a 32-bit value stored in a general register as the effective
memory address. For example:

R2 = memub (R1) // load R2 with unsigned byte from addr R1
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5.8.6 Indirect with offset

The indirect with offset addressing mode adds a signed offset value to a general register value to
create the 32-bit effective memory address. For example:

R2 = memh (R3 + #100) // load R2 with signed halfword
// from [R3 + 100 bytes]

When expressed in assembly language, the offset values always specify byte offsets from the
general register value. The offsets must be integral multiples of the size of the instruction data
type.

Table 5-7 Offset ranges (indirect with offset)

Data type Offset range Oﬁ::ﬁtlt?;res:)?e
doubleword -8192 ... 8184 8
word -4096 ... 4092 4
halfword -2048 ... 2046 2
byte -1024 ... 1023 1

NnoTe: The offset range is smaller for conditional instructions (Section 5.9).

5.8.7 Indirect with register offset

The indirect with register offset addressing mode adds a 32-bit general register value to the result
created by performing an arithmetic left shift of a second 32-bit general register value by the
amount specified in a 2-bit unsigned immediate value, forming the 32-bit effective memory
address. For example:

R2 = memh (R3+R4<<#1) // load R2 with signed halfword
// from [R3 + (R4 << 1)]

The register values always specify byte addresses.

5.8.8 Indirect with autoincrement immediate

The indirect with autoincrement immediate addressing mode uses a 32-bit value stored in a
general register to specify the effective memory address. However, after the address is accessed,
a signed value (known as the increment) is added to the register so it specifies a different memory
address (which is accessed in a subsequent instruction). For example:

R2 = memw (R3++#4) // R3 contains the effective address
// R3 is then incremented by 4

When expressed in assembly language, the increment values always specify byte offsets from the
general register value. The offsets must be integral multiples of the size of the instruction data
type.
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Table 5-8 Increment ranges (indirect with auto-increment immediate)

Data type Increment Incremen_t must be
range multiple of
doubleword -64 ... 56 8
word -32..28 4
halfword -16 ... 14 2
byte 8.7 p

5.8.9 Indirect with autoincrement register

NOTE:

The indirect with autoincrement register addressing mode is functionally equivalent to indirect
with autoincrement immediate, but uses one of the two dedicated address-modify register M0

and M1 (which are part of the control registers Section 2.3.4) instead of an immediate value to
hold the increment. For example:

R2 = memw (RO++M1) // The effective addr is the value of RO.

// Next, Ml is added to RO and the result
// is stored in RO.

When autoincrementing with a modifier register, the increment is a signed 32-bit value that is
added to the general register. This offers two advantages over auto-increment immediate:

m  Alargerincrement range
= Variable increments (because the modifier register can be programmed at runtime)
The increment value always specifies a byte offset from the general register value.

The signed 32-bit increment range is identical for all instruction data types (doubleword, word,
halfword, byte).

5.8.10 Circular with autoincrement immediate

The circular with autoincrement immediate addressing mode is a variant of indirect with
autoincrement addressing — it accesses data buffers in a modulo wrap-around fashion. Circular
addressing is common in data stream processing.

Circular addressing is expressed in assembly language with the address modifier : circ (Mx),
where Mx specifies a modifier register that is programmed to specify the circular buffer
(Section 2.3.4).

For example:

RO = memb (R2++#4:circ (MO)) // Load from R2 in circ buf specified
// by MO

memw (R2++#8:circ(M1)) = RO // Store to R2 in circ buf specified
// by Ml

Circular addressing is set up by programming the following elements:

80-N2040-51 Rev. AB

68



Qualcomm Hexagon V71 Programmer’s Reference Manual Memory

NOTE:

The Length field of the Mx register is set to the length (in bytes) of the circular buffer to
access. A circular buffer is from 4 to (128K-1) bytes long.

Bits 27:24 of the Mx register are always set to 0.

The circular start register csx that corresponds to Mx (cs0 for M0, cs1 for M1) is set to the
start address of the circular buffer.

In circular addressing, after memory is accessed at the address specified in the general register,

the

general register is incremented by the immediate increment value and then modulo’d by the

circular buffer length to implement wrap-around access of the buffer.

When expressed in assembly language, the increment values always specify byte offsets from the

gen

eral register value. The offsets must be integral multiples of the size of the instruction data

type.

Table 5-9 Increment ranges (circular with auto-increment immediate addressing)

Increment Increment must be
Data type .
range multiple of
doubleword -64 ... 56 8
word -32...28 4
halfword -16 ... 14 2
byte 8.7 1

When programming a circular buffer, the following rules apply:

The start address must align to the native access size of the buffer elements.

ABS(Increment) < Length. The absolute value of the increment must be less than the buffer
length.

Access size < (Length-1). The memory access size (1 for byte, 2 for halfword, 4 for word, 8 for
doubleword) must be less than (Length-1).

Buffers must not wrap around in the 32-bit address space.

If any of these rules are not followed, the execution result is undefined.

For

R4.
R4.
MO
R2
CsO
RO

The

uns
fci

example, a 150-byte circular buffer can be set up and accessed as follows:
H = #0 // MO[27:24]= 0x0
L = #150 // length = 150
= R4
= ##cbuf // start addr = cbuf
= R2
= memb (R2++#4:circ (MO)) // Load byte from circ buf
// specified by MO0O/CS0O
// inc R2 by 4 after load
// wrap R2 around if >= 150
following C function describes the behavior of the circular add function:

igned int
rcadd (unsigned int pointer, int offset,
unsigned int M reg, unsigned int CS regq)
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unsigned int length;
int new pointer, start addr, end addr;

length = (M reg&0x01ffff); // lower 17-bits gives buffer size
new_pointer = pointer+offset;
start addr = CS_reg;
end addr = CS_reg + lenth;
if (new pointer >= end addr) {
new pointer -= length;
}  else if (new pointer < start addr) {
new pointer += length;

return (new_pointer);

5.8.11 Circular with autoincrement register

The circular with autoincrement register addressing mode is functionally equivalent to circular
with autoincrement immediate, but uses a register instead of an immediate value to hold the
increment.

Register increments are specified in circular addressing instructions by using the symbol 1 as the
increment (instead of an immediate value). For example:

RO = memw (R2++I:circ(M1)) // load byte with incr of I*4 from
// circ buf specified by M1/CSl

When autoincrementing with a register, the increment is a signed 11-bit value that is added to the
general register. This offers two advantages over circular addressing with immediate increments:

m Larger increment ranges

m  Variable increments (because the increment register can be programmed at runtime)

The circular register increment value is programmed in the I field of the modifier register Mx
(Section 2.3.4) as part of setting up the circular data access. This register field holds the signed 11-
bit increment value.

Increment values are expressed in units of the buffer element data type, and automatically scale
at runtime to the proper data access size.

Table 5-10 Increment ranges (circular with autoincrement register addressing)

Increment Increment must be
Data type -
range multiple of
doubleword -8192 ... 8184 8
word -4096 ... 4092 4
halfword -2048 ... 2046 2
byte -1024 ... 1023 1

When programming a circular buffer (with either a register or immediate increment), the rules
that apply to circular addressing must be followed — for details see Section 5.8.10.
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note: If any of these rules are not followed, the execution result is undefined.

5.8.12 Bit-reversed with autoincrement register

The bit-reversed with autoincrement register addressing mode is a variant of indirect with
autoincrement addressing — it accesses data buffers using an address value that is the bit-wise
reversal of the value stored in the general register. Bit-reversed addressing is used in fast Fourier
transforms (FFT) and Viterbi encoding.

The bit-wise reversal of a 32-bit address value is defined as follows:
m  The lower 16 bits are transformed by exchanging bit 0 with bit 15, bit 1 with bit 14, and so on.

m  The upper 16 bits remain unchanged.
Bit-reversed addressing is expressed in assembly language with the address modifier :brev.

For example:

R2 = memub (R0O++Ml:brev) // The address is (RO.H | bitrev(R0O.L))
// The orginal RO (not reversed) is added
// to Ml and written back to RO

The initial values for the address and increment must be set in bit-reversed form, with the
hardware bit-reversing the bit-reversed address value to form the effective address.

The buffer length for a bit-reversed buffer must be an integral power of 2, with a maximum length
of 64 kB.

To support bit-reversed addressing, buffers must be properly aligned in memory. A bit-reversed
buffer is properly aligned when its starting byte address is aligned to a power of 2 greater than or
equal to the buffer size (in bytes). For example:

int bitrev buf[256]  attribute ((aligned(1024)));

The bit-reversed buffer declared above is aligned to 1024 bytes because the buffer size is 1024
bytes (256 integer words X 4 bytes), and 1024 is an integral power of 2.

The buffer location pointer for a bit-reversed buffer must be initialized so the least-significant 16
bits of the address value are bit-reversed.

The increment value must be initialized to the following value:

bitreverse (buffer size in bytes/2)

where bitreverse is defined as bit-reversing the least-significant 16 bits while leaving the
remaining bits unchanged.

noTe: To simplify the initialization of the bit-reversed pointer, bit-reversed buffers can be aligned to a 64
kB boundary. This initializes the bit-reversed pointer to the base address of the bit-reversed
buffer, with no bit-reversing required for the least-significant 16 bits of the pointer value (which
are all set to 0 by the 64 kB alignment). In most cases, because buffers allocated on the stack only
have an alignment of eight bytes or less, bit-reversed buffers should not be declared on the stack.

80-N2040-51 Rev. AB 71



Qualcomm Hexagon V71 Programmer’s Reference Manual Memory

After a bit-reversed memory access is complete, the general register is incremented by the
register increment value. The value in the general register is never affected by the bit-reversal
that is performed as part of the memory access.

NoTE: The Hexagon processor supports only register increments for bit-reversed addressing — it does not
support immediate increments.

5.9 Conditional load/stores

Some load and store instructions can execute conditionally based on predicate values that were
set in a previous instruction. The compiler generates conditional loads and stores to increase
instruction-level parallelism.

Conditional loads and stores are expressed in assembly language with the instruction prefix “if
(pred_expr)”, where pred expr specifies a predicate register expression (Section 6.1). For

example:
if (PO) RO = memw (R2) // conditional load
if (!'P2) memh(R3 + #100) = R1 // conditional store
if (Pl.new) R3 = memw (R3++#4) // conditional load

Not all addressing modes are supported in conditional loads and stores. Table 5-11 shows
supported modes.

Table 5-11 Addressing modes (conditional load/store)

Addressing mode Conditional
Absolute Yes
Absolute-set No
Absolute with register offset No
Global pointer relative No
Indirect Yes
Indirect with offset Yes
Indirect with register offset Yes
Indirect with autoincrement immediate Yes
Indirect with autoincrement register No
Circular with autoincrement immediate No
Circular with autoincrement register No
Bit-reversed with autoincrement register No

When a conditional load or store instruction uses indirect-with-offset addressing mode, the offset
range is smaller than the range normally defined for indirect-with-offset addressing
(Section 5.8.6).
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NOTE:

Table 5-12 Conditional and normal offset ranges (indirect with offset addressing)

Data type Offset. l.'ange Offset range Offset rnust be
(conditional) (normal) multiple of
doubleword 0...504 -8192 ... 8184 8
word 0...252 -4096 ... 4092 4
halfword 0..126 -2048 ... 2046 2
byte 0..63 -1024 ... 1023 1

For more information on conditional execution, see Chapter 6.

5.10 Cache memory

Memory accesses can be cached or uncached. Separate L1 instruction and data caches exist for
program code and data. A unified L2 cache can be partly or wholly configured as tightly-coupled
memory (TCM)

The Hexagon processor has a cache-based memory architecture:
m  Alevel 1instruction cache holds recently-fetched instructions.

m  Alevel 1 data cache holds recently-accessed data memory.

Load/store operations that access memory through the level 1 caches are referred to as cached
accesses.

Load/stores that bypass the level 1 caches are referred to as uncached accesses.

Specific memory areas can be configured so they perform cached or uncached accesses. This
configuration is performed by the Hexagon processor’s memory management unit (MMU). The
operating system is responsible for programming the MMU.

Two types of caching are supported (as cache modes):

m  Write-through caching keeps the cache data consistent with external memory by always
writing to the memory any data that is stored in the cache.

m  Write-back caching stores data in the cache without being immediately written to external
memory. Cached data that is inconsistent with external memory is referred to as dirty.

The Hexagon processor includes dedicated cache maintenance instructions that push dirty data
out to external memory.
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5.10.1 Uncached memory

In some cases load/store operations must bypass the cache memories and be serviced externally
(for example, when accessing memory-mapped I/0O, registers, and peripheral devices, or other
system defined entities). The operating system is responsible for configuring the MMU to
generate uncached memory accesses.

Uncached memory is categorized into two distinct types:

m  Device-type is for accessing memory that has side-effects (such as a memory-mapped FIFO
peripheral). The hardware ensures that interrupts do not cancel a pending device access. The
hardware does not reorder device accesses. Peripheral control registers should be marked as
device-type.

m  Uncached-type is for memory-like memory. No side effects are associated with an access. The
hardware can load from uncached memory multiple times. The hardware can reorder
uncached accesses.

For instruction accesses, device-type memory is functionally identical to uncached-type memory.
For data accesses, they are different.

Code can execute directly from the L2 cache, bypassing the L1 cache.

5.10.2 Tightly coupled memory

The Hexagon processor supports tightly-coupled instruction memory at Level 1, which is defined
as memory with similar access properties to the instruction cache.

Tightly-coupled memory is also supported at level 2, which is defined as backing store to the
primary caches.

For more information see Chapter 9.

5.10.3 Cache maintenance operations

The Hexagon processor includes dedicated cache maintenance instructions that invalidate cache
data or push dirty data out to external memory.

The cache maintenance instructions operate on specific memory addresses. If the instruction
causes an address error (due to a privilege violation), the processor raises an exception.

NoTE: The exception to this rule is dcfetch, which never causes a processor exception.

Whenever maintenance operations are performed on the instruction cache, the isync
instruction (Section 5.11) must execute immediately afterwards. This instruction ensures that the
maintenance operations are observed by subsequent instructions.
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Table 5-13 Cache instructions (user-level)

Permitted In

Syntax packet Operation
icinva (Rs) Solo 1 Instruction cache invalidate.
Look up instruction cache at address Rs.
If the address is in the cache, invalidate it.
dccleaninva (Rs) Slot 1 Data cache clean and invalidate.
empty or Look up data cache at address Rs.

ALU32 only If the address is in the cache and has dirty data, flush
that data out to memory. The cache line is then
invalidated, whether or not dirty data was written.

dccleana (Rs) Slot 1 Data cache clean.
empty or Look up data cache at address Rs.

ALU32 only If the address is in the cache and has dirty data, flush

that data out to memory.
dcinva (Rs) Slot 1 Equivalent to dccleaninva (Rs) .

empty or
ALU32 only

dcfetch (Rs) Normal 2 Data cache prefetch.

Prefetch data at address Rs into the data cache.

NOTE - This instruction does not cause an exception.
12fetch (Rs,Rt) ALU32 or L2 cache prefetch.

XTYPE only Prefetch data from memory specified by Rs and Rt

into L2 cache.

1 Solo means that the instruction must not be grouped with other instructions in a packet.

2 Normal means that the normal instruction-grouping constraints apply.

5.10.4 L2 cache operations

The cache maintenance operations (Section 5.10.3) operate on both the L1 and L2 caches.

The data cache coherency operations (including clean, invalidate, and clean and invalidate) affect
both the L1 and L2 caches, and ensure that the memory hierarchy remains coherent.

However, the instruction cache invalidate operation affects only the L1 cache. Therefore,

invalidating instructions that might be in the L1 or L2 caches requires a two-step procedure:

1. Use icinva to invalidate instructions from the L1 cache.

2. Usedcinva separately to invalidate instructions from the L2 cache.

5.10.5 Cache line zero

The Hexagon processor includes the dczeroa instruction. This instruction allocates a line in the
L1 data cache and clears it (by storing all zeros). The behavior is as follows:

m  The Rs register value must be 32-byte aligned. If it is unaligned, the processor raises an
unaligned error exception.
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m  For a cache hit, the specified cache line is cleared (written with all zeros) and made dirty.

m  For a cache miss, the specified cache line is not fetched from external memory. Instead, the
line is allocated in the data cache, cleared, and made dirty.

This instruction is useful in optimizing write-only data. It allows for the use of write-back pages —
the most power and performance efficient — without the need to initially fetch the line to write.
This removes unnecessary read bandwidth and latency.

NoTE: dczeroa has the same exception behavior as write-back stores.

A packet with dczeroa must have Slot 1 either empty or containing an ALU32 instruction.

5.10.6 Cache prefetch

The Hexagon processor supports the following types of cache prefetching:
m  Hardware-based instruction cache prefetching

m  Software-based data cache prefetching

=  Software-based L2fetch

m  Hardware-based data cache prefetching

Hardware-based instruction cache prefetching

L1 and L2 instruction cache prefetching can be enabled or disabled on a per-thread basis — this is
done by setting the HFI field in the user status register (Section 2.3.3).

Software-based data cache prefetching

The Hexagon processor includes the instruction dcfetch. This instruction queries the L1 data
cache based on the address specified in the instruction:

m If the address is present in the cache, no action is taken.

= If the cache line for the address is missing, the processor attempts to fill the cache line from
the next level of memory. The thread does not stall, but rather continues executing while the
cache line fill occurs in the background.

m [fthe address is invalid, no exception is generated and the dcfetch instruction is treated as a
NOP.

Software-based L2fetch

More powerful L2 prefetching of data or instructions is provided by the 12fetch instruction,
which specifies an area of memory that is prefetched by the hardware prefetch engine of the
Hexagon processor. 12fetch specifies two registers (Rs and Rt) as operands. Rs contains the 32-
bit virtual start address of the memory area to prefetch. Rt contains three bit fields that further
specify the memory area:

m  Rt[15:8] —width, specifies the width (in bytes) of a block of memory to fetch.

m  Rt[7:0] —Height, specifies the number of width-sized blocks to fetch.
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NOTE:

NOTE:

m  Rt[31:16] —stride, specifies an unsigned byte offset that increments the pointer after each
Width-sized block is fetched.

The 12fetch instruction is nonblocking: it initiates a prefetch operation that is performed in the
background by the prefetch engine while the thread continues to execute Hexagon processor
instructions.

The prefetch engine requests all lines in the specified memory area. If the line(s) of interest are
already resident in the L2 cache, the prefetch engine performs no action. If the lines are not in the
L2 cache, the prefetch engine attempts to fetch them.

The prefetch engine makes a best effort to prefetch the requested data, and attempts to perform
prefetching at a lower priority than demand fetches. This prevents the prefetch engine from
adding bus traffic when the system is under a heavy load.

If a program executes an 12fetch instruction while the prefetch operation from a previous
12fetch is still active, the prefetch engine halts the current prefetch operation.

Executing 12 fetch with any bit field operand programmed to zero cancels prefetch activity.

The status of the current prefetch operation is maintained in the PFA field of the user status
register (Section 2.3.3). This field can determine whether a prefetch operation has completed.

With respect to MMU permissions and error checking, the 12 fetch instruction behaves similarly
to a load instruction. If the virtual address causes a processor exception, the exception is taken.
This differs from the dcfetch instruction, which is treated as a NOP in the presence of a
translation/protection error.

Prefetches are dropped when the generated prefetch address resides on a different page than the
start address. The programmer must use sufficiently large pages to ensure this does not occur.
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Figure 5-2 shows two examples of using the 12fetch instruction. The first shows a box prefetch,
where a 2D range of memory is defined within a larger frame. The second example shows a
prefetch for a large linear memory area of size (Lines * 128).

L2FETCH for box prefetch L2FETCH for large linear prefetch

31 16 15 87 31 16 15 87 0
Rt Stride | Width H:t'g Rt 128 128 | Lines
Rs Start address Rs Start address

/ Stride
< 7 >
Width
. Prefetch
Height area 128 x Lines

Figure 5-2 L2fetch instruction

Hardware-based data cache prefetching

L1 data cache prefetching can be enabled or disabled on a per-thread basis — this is done by
setting the HFD field in the User status register.

When data cache prefetching is enabled, the Hexagon processor observes patterns of data cache
misses, and attempts to predict future misses based on any recurring patterns of misses where
the addresses are separated by a constant stride. If such patterns are found, the processor
attempts to automatically prefetch future cache lines.

Data cache prefetching is user-enabled at four levels of aggressiveness:
s HFD =00: No prefetching

m  HFD =01: Prefetch up to four lines for misses originating from a load, with a post-update
addressing mode that occurs within a hardware loop

m  HFD = 10: Prefetch up to four lines for misses originating from loads that occur within a
hardware loop

m  HFD =11: Prefetch up to eight lines for misses originating from loads
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5.11 Memory ordering

NOTE:

Some devices might require synchronization of stores and loads when they are accessed. In this
case, a set of processor instructions enable programmer control of the synchronization and
ordering of memory accesses.

Table 5-14 Memory ordering instructions

Syntax Operation
isync Instruction synchronize.
This instruction should be executed after any instruction cache maintenance
operation.
syncht Synchronize transactions.

Perform “heavyweight” synchronization. Ensure that all previous program
transactions (for example, memw_locked, cached and uncached load/store)
complete before execution resumes past this instruction.

The syncht operation ensures that outstanding memory operations from threads
are complete before the syncht instruction is committed.

barrier Set memory barrier.

Ensure proper ordering between the program accesses performed before the
instruction and those performed after the instruction.

Accesses before the barrier are globally observable before any access occurring
after the barrier can be observed.

The barrier operation ensures that outstanding memory operations from the

thread executing the barrier are complete before the instruction is committed.

Data memory accesses and program memory accesses are treated separately and held in
separate caches. Software should ensure coherency between data and program code if necessary.

For example, with generated or self-modified code, the modified code is placed in the data cache
and can be inconsistent with program cache. The software must explicitly force modified data
cache lines to memory (either by using a write-through policy, or through explicit cache clean
instructions). Use a barrier instruction to ensure completion of the stores. Finally, invalidate
relevant instruction cache contents so the new instructions can be refetched.

Here is the recommended code sequence to change and then execute an instruction:

ICINVA (R1) // Clear code from instruction cache
ISYNC // Ensure that ICINVA is finished
MEMW (R1) =R0O // write the new instruction
DCCLEANINVA (R1) // force data out of data cache
SYNCHT // Ensure that it’s in memory

JUMPR R1 // Can now execute code at Rl

The memory-ordering instructions must not be grouped with other instructions in a packet,
otherwise the behavior is undefined.

This code sequence differs from the one used in previous processor versions.
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5.12 Atomic operations

Atomic memory operations (load locked/store conditional) are supported to implement
multithread synchronization.

The Hexagon processor includes an LL/SC (load locked / store conditional) mechanism to provide
the atomic read-modify-write operation that is necessary to implement synchronization
primitives such as semaphores and mutexes.

These primitives synchronize the execution of different software programs running concurrently
on the Hexagon processor. They also provide atomic memory support between the Hexagon
processor and external blocks.

Table 5-15 Atomic instructions

Syntax Description

Rd = memw locked(Rs) Load locked word.
Reserve lock on word at address Rs.

memw locked(Rs,Pd) = Rt Store conditional word.

If no other atomic operation has been performed at
the address (that is, atomicity is ensured), perform the
store to the word at address Rs and return TRUE in
Pd; otherwise return FALSE.

TRUE indicates that the LL and SC operations have
performed atomically.

Rdd = memd locked(Rs) Load locked doubleword.
Reserve lock on doubleword at address Rs.

memd locked(Rs,Pd) = Rtt Store conditional doubleword.

If no other atomic operation has been performed at
the address (that is, atomicity is ensured), perform the
store to the doubleword at address Rs and return
TRUE in Pd; otherwise return FALSE.

TRUE indicates that the LL and SC operations have
performed atomically.

Here is the recommended code sequence to acquire a mutex:

// Assume mutex address is held in RO
// Assume R1,R3,P0,Pl are scratch

lockMutex:
R3 = #1

lock test spin:
Rl = memw locked(RO) // Do normal test to wait
Pl = cmp.eq(R1,#0) // For lock to be available
if (!P1l) jump lock test spin
memw_ locked (RO,P0) = r3 // Do store conditional (SC)

if (!P0) jump lock test spin // Was LL and SC done atomically?

Here is the recommended code sequence to release a mutex:

// Assume mutex address is held in RO
// Assume R1 is scratch
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R1 = #0
memw (RO) = R1

Atomic memx_locked operations are supported for external accesses that use the AXI bus and
support atomic operations. To perform load-locked operations with external memory, the
operating system must define the memory page as uncacheable, otherwise the processor
behavior is undefined.

If a load locked operation is performed on an address that does not support atomic operations,
the behavior is undefined.

For atomic operations on cacheable memory, the page attributes must be set to cacheable and
write-back, otherwise the behavior is undefined. Cacheable memory must be used when threads
need to synchronize with each other.

Nnote: External memx locked operations are not supported on the AHB. If they are performed on the
AHB, the behavior is undefined.
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6 Conditional execution

The Hexagon processor uses a conditional execution model based on compare instructions that
set predicate bits in one of four 8-bit predicate registers (PO through P3). These predicate bits can
conditionally execute certain instructions.

Conditional scalar operations examine only the least-significant bit in a predicate register, while
conditional vector operations examine multiple bits in the register.

Branch instructions are the main consumers of the predicate registers.

6.1 Scalar predicates

6.1.1

Scalar predicates are 8-bit values in conditional instructions to represent truth values:
m  OxFF represents true

m  0x00 represents false

The Hexagon processor provides the four 8-bit predicate registers PO-P3 to hold scalar predicates
(Section 2.3.5). These registers are assigned values by the predicate-generating instructions, and
examined by the predicate-consuming instructions.

Generating scalar predicates

The following instructions generate scalar predicates:

m  Compare byte, halfword, word, doubleword

m  Compare single- and double-precision floating point
m  Classify floating-point value

m  Compare bitmask

= Bounds check

= TLB match

m  Store conditional
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Table 6-1 Scalar predicate-generating instructions

Syntax Operation
Pd = cmpb.eq(Rs, {Rt, #u8}) Equal (signed).
gg _ ?T??&leqéRs(ﬁéRTﬁtsié)lo b Compare register Rs to Rt or a signed immediate for
Pd = cmp. eg'(Rgs, REL) equality. Assign Pd the resulting truth value.
Pd = sfcmp.eq(Rs,Rt)
Pd = dfcmp.eg(Rss,Rtt)
Pd = cmpb.gt (Rs, {Rt, #s8} Greater than (signed).
gg _ ?r}?gﬁgt (is(ﬁéR?ﬁtsié)lo 1 Compare register Rs to Rt or a signed immediate for
Pd = cmp. glz'(gss, REL) signed greater than. Assign Pd the resulting truth
Pd = sfcmp.gt (Rs,Rt) value.
Pd = dfcmp.gt (Rss,Rtt)
Pd = cmpb.gtu(Rs, {Rt, #u7}) Greater than (unsigned).
ﬁg - ?T?ngt;éis(ééR?éﬁu;L}l; b Compare register Rs to Rt or an unsigned immediate
Pd = cmp.gtu (Rss,Rtt) for unsigned greater than. Assign Pd the resulting
truth value.
Pd = cmp.ge (Rs, #s8) Greater than or equal (signed).
gg _ ;Egﬁg : 32 EEE’SR;,)C,C) Compare register Rs to Rt or a signed immediate for

signed greater than or equal. Assign Pd the resulting
truth value.

Pd = cmp.geu (Rs, #u8)

Greater than or equal (unsigned).

Compare register Rs to an unsigned immediate for
unsigned greater than or equal. Assign Pd the
resulting truth value.

Pd = cmp.lt (Rs,Rt)

Less than (signed).

Compare register Rs to Rt for signed less than.
Assign Pd the resulting truth value.

Pd = cmp.ltu(Rs,Rt)

Less than (unsigned).

Compare register Rs to Rt for unsigned less than.
Assign Pd the resulting truth value.

Pd
Pd

sfcmp.uo (Rs,Rt)
dfcmp.uo (Rss,Rtt)

Unordered (signed).

Determine if register Rs or Rt is set to the value NaN.
Assign Pd the resulting truth value.

Pd=sfclass (Rs, #ub)
Pd=dfclass (Rss, #ub)

Classify value (signed).

Determine if register Rs is set to any of the specified
classes. Assign Pd the resulting truth value.

Pd = [!]tstbit(Rs, {Rt,#u5}) Test if bit set.
Rt or an unsigned immediate specifies a bit position.
Test if the bit in Rs that is specified by the bit position
is set. Assign Pd the resulting truth value.

Pd = [!]bitsclr(Rs, {Rt, #u6}) Test if bits clear.

Rt or an unsigned immediate specifies a bitmask.

Test if the bits in Rs that are specified by the bitmask
are all clear. Assign Pd the resulting truth value.

Pd = [!]bitsset (Rs,Rt)

Test if bits set.
Rt specifies a bitmask.

Test if the bits in Rs that are specified by the bitmask
are all set. Assign Pd the resulting truth value.
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Table 6-1 Scalar predicate-generating instructions (cont.)

Rt Store conditional.
Rtt

memw locked(Rs, Pd)
memd locked(Rs, Pd)

If no other atomic operation has been performed at
the address (i.e., atomicity is ensured), perform the
store to the word at address Rs. Assign Pd the
resulting truth value.

Pd = boundscheck (Rs,Rtt) Bounds check.

Determine if Rs falls in the numeric range defined by
Rtt. Assign Pd the resulting truth value.

Pd = tlbmatch (Rss,Rt) Determine if the TLB entry in Rss matches the
ASID:PPN specified in Rt. Assign Pd the resulting
truth value.

NnoTe: One of the compare instructions (cmp . eq) includes a variant that stores a binary predicate value
(0 or 1) inageneral register not a predicate register.

6.1.2 Consuming scalar predicates

Certain instructions can conditionally execute based on the value of a scalar predicate (or
alternatively specify a scalar predicate as an input to their operation).

The conditional instructions that consume scalar predicates examine only the least-significant bit
of the predicate value. In the simplest case, this bit value directly determines whether the
instruction executes:

m 1lindicates that the instruction executes

m  Oindicates that the instruction does not execute

If a conditional instruction includes the operator ! in its predicate expression, the logical negation
of the bit value determines whether the instruction executes.

Conditional instructions are expressed in assembly language with the instruction prefix if
(pred_expr), Where pred expr specifies the predicate expression. For example:

if (PO) Jjump target // Jump if PO is true

if (!P2) R2 = R5 // Assign register if !P2 is true
if (P1) RO = sub(R2,R3) // Conditionally subtract if P1
if (P2) RO = memw (R2) // Conditionally load word if P2

The following instructions can be conditional instructions:
= Jumps and calls (Section 8.3)

= Many load and store instructions (Section 5.9)

= Logical instructions (including AND/OR/XOR)

= Shift halfword

m  32-bit add/subtract by register or short immediate

= Sign and zero extend

m  32-bit register transfer and 64-bit combine word
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6.1.3

NOTE:

m  Register transfer immediate

m  Deallocate frame and return

When a conditional load or store executes and the predicate expression is false, the instruction is
canceled (including any exceptions that might occur). For example, if a conditional load uses an
address with a memory permission violation, and the predicate expression is false, the load does
not execute and the exception is not raised.

The mux instruction accepts a predicate as one of its basic operands:
Rd = mux (Ps,Rs,Rt)

The mux instruction elects either Rs or Rt based on the least significant bit in Ps. If the least-
significant bit in Ps is a 1, Rd is set to Rs, otherwise it is set to Rt.

Auto-AND predicates

If multiple compare instructions in a packet write to the same predicate register, the result is the
logical AND of the individual compare results. For example:

{
PO = cmp (3) // If A && B then Jjump
PO cmp (B)
if (PO.new) Jjump:T taken path

}

To perform the corresponding OR operation, the following instructions can compute the negation
of an existing compare (using De Morgan’s law):

m Pd = !cmp.{eq,gt} (Rs, {#s1l0,Rt} )

m Pd = !cmp.gtu(Rs, {#u9,Rt} )

m  Pd

'tstbit (Rs, {#u5,Rt} )
m  Pd

!bitsclr(Rs, {#u6,Rt} )

m Pd = !bitsset (Rs,Rt)

Auto-AND predicates have the following restrictions:

= If a packet contains endloopN, it cannot perform an auto-AND with predicate register P3.

= If a packet contains a register transfer from a general register to a predicate register, no other
instruction in the packet can write to the same predicate register. As a result, a register
transfer to P3:0 or Cc5:4 cannot be grouped with any other predicate-writing instruction.

= The instructions spNloop0, decbin, tlbmatch, memw locked, memd locked,
add:carry, sub:carry, sfcmp, and dfcmp cannot be grouped with another instruction
that sets the same predicate register.

A register transfer from a predicate register to a predicate register has the same auto-AND
behavior as a compare instruction.
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6.1.4 Dot-new predicates

The Hexagon processor can generate and use a scalar predicate in the same instruction packet
(Section 3.3). This feature is expressed in assembly language by appending the suffix .new to the
specified predicate register. For example:

if (PO.new) R3 = memw (R4)

To see how to use dot-new predicates, consider the following C statement and the corresponding
assembly code that is generated from it by the compiler:

C statement

if (R2 == 4)
R3 = *R4;
else
R5 = 5;

Assembly code

{
PO = cmp.eq(R2, #4)
if (PO.new) R3 = memw (R4)
if (!'PO.new) R5 = #5

}

In the assembly code, a scalar predicate is generated and then consumed twice within the same
instruction packet.

The following conditions apply to using dot-new predicates:

m  The predicate must be generated by an instruction in the same packet. The assembler
normally enforces this restriction, but if the processor executes a packet that violates this
restriction, the execution result is undefined.

m  Asingle packet can contain both the dot-new and normal forms of predicates. The normal
form examines the old value in the predicate register, rather than the newly-generated value.
For example:

{

PO = cmp.eq(R2, #4)
if (PO.new) R3 = memw(R4) // Use newly-generated PO value
if (PO) R5 = #5 // Use previous PO value
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6.1.5 Dependency constraints

Two instructions in an instruction packet should not write to the same destination register
(Section 3.3.5). An exception to this rule is when the two instructions are conditional, and only
one of them has the predicate expression value true when the packet is executed.

For example, the following packet is valid as long as P2 and p3 never both evaluate to true
when the packet is executed:

if (P2) R3 = #4 // P2, P3, or both must be false
if (P3) R3 = #7

Because predicate values change at runtime, the programmer must ensure that such packets are
always valid during program execution. If they are invalid, the processor takes the following
actions:

m  When writing to general registers, an error exception is raised.

m  When writing to predicate or control registers, the result is undefined.

6.2 Vector predicates

The predicate registers are also used for conditional vector operations. Unlike scalar predicates,
vector predicates contain multiple truth values that are generated by vector predicate-generating
operations.

For example, a vector compare instruction compares each element of a vector and assigns the
compare results to a predicate register. Each bit in the predicate vector contains a truth value
indicating the outcome of a separate compare performed by the vector instruction.

The vector mux instruction uses a vector predicate to selectively merge elements from two
separate vectors into a single destination vector. This operation is useful for enabling the
vectorization of loops with control flow (for example, branches).

The vector instructions that use predicates are described in the following sections.
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6.2.1 Vector compare

A vector compare instruction inputs two 64-bit vectors, performs separate compares for each pair
of vector elements, and generates a predicate value that contains a bit vector of truth values.

In Figure 6-1 two 64-bit vectors of bytes (contained in Rss and Rtt) are being compared. The result
is assigned as a vector predicate to the destination register Pd.

In the example vector predicate shown in Figure 6-1, every other compare result in the predicate
is true (that is, 1).

Rss

Rit

Figure 6-1 Vector byte compare

Figure 6-2 shows comparison of two 64-bit vectors of halfwords. The result is assigned as a vector
predicate to the destination register Pd.

Because a vector halfword compare yields only four truth values, each truth value is encoded as
two bits in the generated vector predicate.

cmp cmp Cmp
olo Pd

111100 1]1
7 0

Rss

Rtt

Figure 6-2 Vector halfword compare generating a vector predicate
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6.2.2

NOTE:

6.2.3

Vector mux instruction

A vector mux instruction conditionally selects the elements from two vectors. The instruction
takes as input two source vectors and a predicate register. For each byte in the vector, the
corresponding bit in the predicate register is used to choose from one of the two input vectors.
The combined result is written to the destination register.

Rss
Ritt
VlVlVlVlVlVlVlVl
mux mux mux mux mux mux mux mux
P[7] P[6] P[5] P4]l PI3] P21 1 PI1] P[O]
Rdd
Figure 6-3 Vector mux instruction
Table 6-2 Vector mux instruction
Syntax Operation
Rdd = vmux (Ps,Rss,Rtt) Select bytes from Rss and Rtt

Changing the order of the source operands in a mux instruction enables formation of both senses
of the result. For example:

R1:0 = vmux (PO,R3:2,R5:4) // Choose bytes from R3:2 if true
R1:0 = vmux (PO,R5:4,R3:2) // Choose bytes from R3:2 if false

By replicating the predicate bits generated by word or halfword compares, the vector mux
instruction can select words or halfwords.

Using vector conditionals

Vector conditional support is used to vectorize loops with conditional statements.

Consider the following C statement:

for (i=0; i<8; i++) {
if (A[i]) |
B[i] = C[i];

}

Assuming arrays of bytes, this code can be vectorized as follows:

R1:0 = memd(R_A) // R1:0 holds A[7]-A[0]

R3 = #0 // Clear R3:2

R2 = #0

PO = vcmpb.eq(R1:0,R3:2) // Compare bytes in A to zero
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R5:4 = memd (R _B) //
R7:6 = memd (R _C) //
R3:2 = vmux (PO,R7:6,R5:4) //
memd (R_B) = R3:2 //

6.3 Predicate operations

R5:4 holds B]
R7:6 holds C|
If (A[i]) BI[1
Store B[7]-BI[

71-BI[0]
71-CI[0]
]=C[1i]
0]

The Hexagon processor provides a set of operations to manipulate and move predicate registers.

Table 6-3 Predicate register instructions

Syntax Operation
Pd = Ps Transfer predicate Ps to Pd
Pd = Rs Transfer register Rs to predicate Pd
Rd = Ps Transfer predicate Ps to register Rd
Pd = and(Ps, [!]Pt) Set Pd to bitwise AND of Ps and [NOT] Pt
Pd = or(Ps, [!]Pt) Set Pd to bitwise OR of Ps and [NOT] Pt
Pd = and(Ps, and(Pt, [!]Pu) Set Pd to AND of Ps and (AND of Pt and [NOT] Pu)
Pd = and(Ps, or(Pt,[!]Pu) Set Pd to AND of Ps and (OR of Pt and [NOT] Pu)
Pd = or(Ps, and(Pt, [!]Pu) Set Pd to OR of Ps and (AND of Pt and [NOT] Pu)
Pd = or(Ps, or(Pt,[!]Pu) Set Pd to OR of Ps and (OR of Pt and [NOT] Pu)
Pd = not (Ps) Set Pd to bitwise inversion of Ps
Pd = xor (Ps,Pt) Set Pd to bitwise exclusive OR of Ps and Pt
Pd = any8 (Ps) Set Pd to OxFF if any bit in Ps is 1, 0x00 otherwise
Pd = all8 (Ps) Set Pd to 0x00 if any bit in Ps is 0, OxFF otherwise

NOTE:

These instructions belong to instruction class CR.

Predicate registers can transfer to and from the general registers either individually or as register

quadruples (Section 2.3.5).
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7 Software stack

The Hexagon processor includes dedicated registers and instructions to support a call stack for
subroutine execution.

The stack structure follows standard C conventions.

7.1 Stack structure

The stack is defined to grow from high addresses to low addresses. The stack pointer register SP
points to the data element that is on the top of the stack.
Stack in memory

Saved LR
Saved FP

Higher address
Procedure local
data on stack

Stack frame

S |

Saved LR
Saved FP <¢—— FP register

Procedure local
data on stack

\/

<4—— SP register
Lower address

Unallocated stack

Figure 7-1 Stack structure

80-N2040-51 Rev. AB 91



Qualcomm Hexagon V71 Programmer’s Reference Manual Software stack

NoTE: The Hexagon processor supports three dedicated stack instructions: allocframe,
deallocframe, and dealloc return (Section 7.5).

The SP address must always remain 8-byte aligned for the stack instructions to work properly.

7.2 Stack frames

The stack stores stack frames, which are data structures that store state information on the active
subroutines in a program (that is, those that were called but have not yet returned). Each stack
frame corresponds to an active subroutine in the program.

A stack frame contains the following elements:
m  The local variables and data used by the subroutine
m  The return address for the subroutine call (pushed from the link register LR)

m  The address of the previous stack frame allocated on the stack (pushed from the frame
pointer register FP)

The frame pointer register FP always contains the address of the saved frame pointer in the
current stack frame. It facilitates debugging by enabling a debugger to examine the stack in
memory and easily determine the call sequence, function parameters, and so on.

note: For leaf functions, it is often unnecessary to save FP and LR. In this case FP contains the frame
pointer of the calling function, not the current function.

7.3 Stack protection

The Hexagon V71 processor supports the following features to protect the integrity of the
software stack.

7.3.1 Stack bounds checking

Stack bounds checking prevents a stack frame from being allocated past the lower boundary of
the software stack.

FRAMELIMIT is a 32-bit control register that stores a memory address that specifies the lower
bound of the memory area reserved for the software stack. When the al1ocframe instruction
allocates a new stack frame, it compares the new stack pointer value in SP with the stack bound
value in FRAMELIMIT. If SP is less than FRAMELIMIT, the Hexagon processor raises exception 0x27
(Section 8.10).

note: Stack bounds checking is performed when the processor is in User and Guest modes, but not in
Monitor mode.
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7.3.2 Stack smashing protection

NOTE:

Stack smashing is a technique malicious code uses to gain control over an executing program.
Malicious code causes buffer overflows in the local data of a procedure, with the goal of
modifying the subroutine return address stored in a stack frame so it points to the malicious code
instead of the intended return code.

Stack smashing protection prevents this from happening by scrambling the subroutine return
address when a new stack frame is allocated, and then unscrambling the return address when the
frame is deallocated. Because the value in FRAMEKEY changes regularly and varies from device to
device, it becomes difficult to precalculate a malicious return address.

FRAMEKEY is a 32-bit control register that scrambles return addresses stored on the stack:

= In the allocframe instruction, the 32-bit return address in link register LR is XOR-scrambled
with the value in FRAMEKEY before it is stored in the new stack frame.

m  In deallocframe and dealloc_return, the return address loaded from the stack frame is
unscrambled with the value in FRAMEKEY before it is stored in LR.

After a processor reset, the default value of FRAMEKEY is 0. If this value is not changed, stack
smashing protection is effectively disabled.

Each hardware thread has its own instance of the FRAMEKEY register.

7.4 Stack registers

NOTE:

Table 7-1 Stack registers

Register Name Description Alias
SP Stack pointer Points to topmost stack element in memory R29

FP Frame pointer Points to previous stack frame on stack R30

LR Link register Contains return address of subroutine call R31
FRAMELIMIT | Frame limit register Contains lowest address of stack area c16
FRAMEKEY | Frame key register Contains scrambling key for return addresses | C17

SP, FP, and LR are aliases of three general registers (Section 2-1). These general registers are
conventionally dedicated for use as stack registers.

7.5 Stack instructions

The Hexagon processor includes the instructions allocframe and deallocframe to efficiently
allocate and deallocate stack frames on the call stack.
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Table 7-2 Stack instructions

Syntax

Operation

allocframe (#ull:3)

Allocate stack frame is used after a call. It first XORs the values
in LR and FRAMEKEY, and pushes the resulting scrambled
return address and FP to the top of stack.

Next, it subtracts an unsigned immediate from SP to allocate
room for local variables. If the resulting SP is less than
FRAMELIMIT, the processor raises exception 0x27. Otherwise,
SP is set to the new value, and FP is set to the address of the
old frame pointer on the stack.

The immediate operand as expressed in assembly syntax

specifies the byte offset. This value must be 8-byte aligned. The
valid range is from 0 to 16 kB.

deallocframe

Deallocate stack frame

Use this instruction before a return to free a stack frame. It first
loads the saved FP and LR values from the address at FP, and
XORs the restored LR with the value in FRAMEKEY to
unscramble the return address. SP is then pointed back to the
previous frame.

dealloc return

Deallocate frame and return is a subroutine return with stack
frame deallocate.

Perform deallocframe operation, and then perform
subroutine return (Section 8.3.3) to the target address loaded
from LR by deallocframe.

NOoTE: allocframe and deallocframe load and store the LR and FP registers on the stack as a single
aligned 64-bit register pair (that is, LR:FP).
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8 Program flow

The Hexagon processor supports the following program flow facilities:
m  Conditional instructions

m  Hardware loops

= Software branches

m  Pauses

m  Exceptions

8.1 Conditional instructions

Many Hexagon processor instructions can conditionally execute. For example:

if (P0) RO = memw (R2) // Conditionally load word if PO
if (!'P1l) jump label // Conditionally jump if not Pl

The following instructions can be specified as conditional:
= Jumps and calls

m  Many load and store instructions

m Logical instructions (including AND/OR/XOR)

= Shift halfword

= 32-bit add/subtract by register or short immediate

= Sign and zero extend

m  32-bit register transfer and 64-bit combine word

m  Register transfer immediate

m  Deallocate frame and return

For more information, see Section 5.9 and Chapter 6.
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8.2 Hardware loops

The Hexagon processor includes hardware loop instructions that perform loop branches with zero
overhead. For example:

loopO (start, #3) // Loop 3 times
start:
{ RO = mpyi(RO,R0) } :endloopO

The loop instructions support nestable loops, with few restrictions on their use.

Two sets of hardware loop instructions, - 1oop0 and 1loopl -, nest hardware loops one level
deep. For example:

// Sum the rows of a 100x200 matrix.

loopl (outer start,#100)
outer start:
RO = #0
loopO (inner start, #200)
inner start:
R3 = memw (R1++#4)
{ RO = add(RO,R3) }:endloop0
{ memw (R2++#4) = RO }:endloopl

Use the hardware loop instructions as follows:
m  Use loop0 for non-nested loops.

m  Use loopo0 for the inner loop and 1oop1 for the outer loop for nested loops.

NoTe: If a program must create loops nested more than one level deep, the two innermost loops can be
implemented as hardware loops, with the remaining outer loops implemented as software
branches.

Each hardware loop is associated with a pair of dedicated loop registers:

m  The loop start address register SAn is set to the address of the first instruction in the loop
(which is typically expressed in assembly language as a label).

m  The loop count register LCn is set to a 32-bit unsigned value, which specifies the number of
loop iterations to perform. When the PC reaches the end of the loop, LCn is examined to
determine whether the loop should repeat or exit.

The hardware loop setup instruction sets both of these registers at the same time — typically
there is no need to set them individually. However, because the loop registers completely specify
the hardware loop state, saving and restoring the registers (either automatically by a processor
interrupt or manually by the programmer) enables a suspended hardware loop to resume
normally after its loop registers reload with the saved values.

The Hexagon processor provides two sets of loop registers for the two hardware loops:
m  SAO and LCO are used by loop0
m  SAl and LC1 are used by loop1l
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Table 8-1 Hardware loop instructions

Syntax Description

loopN (start, Rs) Hardware loop with register loop count.

Set registers SAn and LCn for hardware loop N:

m  SAn is assigned the specified start address of the loop.
m LCn is assigned the value of general register Rs.

The loop start operand is encoded as a PC-relative
immediate value.

loopN (start, Hardware loop with immediate loop count.

#count) Set registers SAn and LCn for hardware loop N:

m  SAnis assigned the specified start address of the loop.
m  LCnis assigned the specified immediate value (0-1023).

The loop start operand is encoded as a PC-relative
immediate value.

:endloopN Hardware loop end instruction.

Performs the following operation:
if (LCn > 1) {PC = SAn; LCn = LCn-1}

This instruction appears in assembly as a suffix appended to the last
packet in the loop. It is encoded in the last packet.

SAn = Rs Set loop start address to general register Rs

LCn = Rs Set loop count to general register Rs

NnoTE: The loop instructions are assigned to instruction class CR.

8.2.1 Loop setup

To set up a hardware loop, the loop registers SAn and LCn must be set to the proper values. This
can be done in two ways:

m A loopNinstruction

m  Register transfers to SAn and LCn

The loopN instruction performs the work of setting SAn and LCn. For example:

loopO (start, #3) // SAO=g&start, LC0=3
start:
{ RO = mpyi(RO,R0) } :endloopO

In this example, the hardware loop (consisting of a single multiply instruction) executes three
times. The 1oop0 instruction sets register SAO to the address value of label start, and LCO to 3.

Loop counts are limited to the range 0 to 1023 when they are expressed as immediate values in
loopN. If the desired loop count exceeds this range, it must be specified as a register value. For
example:

Using loopN:

R1 = #20000;
loopO (start,R1) // LC0=20000, SAO0=&start
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start:
{ RO = mpyi(RO,R0O) } :endloopO

Using register transfers:
R1 = #20000

LCO = R1 // LC0=20000

R1 = #start

SAQ0 = R1 // SAO=&start
start:

{ RO = mpyi(RO,RO) } :endloopO

If a loopN instruction is located too far from its loop start address, the PC-relative offset value that
specifies the start address can exceed the maximum range of the instruction’s start-address
operand. If this occurs, either move the loopN instruction closer to the loop start, or specify the
loop start address as a 32-bit constant (Section 10.9).

For example, using 32-bit constants:

R1 = #20000;
loopO (##start,R1) // LC0=20000, SAO=&start

8.2.2 Loop end

The loop end instruction indicates the last packet in a hardware loop. It is expressed in assembly
language by appending the packet with the symbol “:endloopN”, where N specifies the hardware
loop (0 or 1). For example:

loopO (start, #3)
start:
{ RO = mpyi(RO,R0O) } :endloopO // Last packet in loop

The last instruction in the loop must always be expressed in assembly language as a packet (using
curly braces), even if it is the only instruction in the packet.

Nested hardware loops can specify the same instruction as the end of both the inner and outer
loops. For example:

// Sum the rows of a 100x200 matrix.
// Software pipeline the outer loop.

p0 = cmp.gt (RO, RO) // p0 = false
loopl (outer start, #100)
outer start:
{ if (p0) memw (R2++#4) = RO
p0 = cmp.eq (RO, RO0) // p0 = true
RO = #0

loopO (inner start, #200) }
inner start:
R3 = memw (R1++#4)
{ RO = add(R0O,R3) }:endloopO:endloopl
memw (R2++#4) = RO
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Though endloopN behaves like a regular instruction (by implementing the loop test and branch),
it does not execute in any instruction slot, and does not count as an instruction in the packet.
Therefore a single instruction packet that is marked as a loop end can perform up to six
operations:

m  Fourregular instructions (the normal limit for an instruction packet)
m  The endloop0 test and branch

m  The endloopl test and branch

NoTE: The endloopN instruction is encoded in the instruction packet (Section 10.6).

8.2.3 Loop execution

After a hardware loop is set up, the loop body always executes at least once regardless of the
specified loop count (because the loop count is not examined until the last instruction in the
loop). Therefore, if a loop must optionally execute zero times, it must be preceded with an explicit
conditional branch. For example:

loopO0 (start,R1)
PO = cmp.eqg(R1,#0)
if (PO) jump skip
start:
{ RO = mpyi(RO,R0) } :endloopO
skip:

In this example, a hardware loop is set up with the loop count in R1, but if the value in R1 is zero a
software branch skips over the loop body.

After the loop end instruction of a hardware loop executes, the Hexagon processor examines the
value in the corresponding loop count register:

m [f the value is greater than 1, the processor decrements the loop count register and performs
a zero-cycle branch to the loop start address.

m [f the value is less than or equal to 1, the processor resumes program execution at the
instruction immediately following the loop end instruction.

NoTE: Because nested hardware loops can share the same loop end instruction, the processor can
examine both loop count registers in a single operation.

8.2.4 Pipelined hardware loops

Software pipelined loops are common for VLIW architectures such as the Hexagon processor.
They offer increased code performance in loops by overlapping multiple loop iterations. Pipeline
hazards are resolved by the hardware: instruction scheduling is not constrained by pipeline
restrictions.

A software pipeline has three sections:
m A prologue in which the loop is primed

= Akernel (or steady-state) portion
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m  An epilogue that drains the pipeline

Table 8-2 Software pipelined loop

int foo(int *A, int *result)
{
int 1i;
for (1i=0;1<100;1i++) {
result[i]l= A[1i]*A[i];

{ R3 = R1
loop0 (.kernel, #98) // Decrease loop count by 2

R1 = memw (RO++#4) // First prologue stage
{ R1 = memw (RO++#4) // Second prologue stage
R2 = mpyi (R1,R1)

.falign
.kernel:
{ Rl = memw (RO++#4) // Kernel
R2 mpyi (R1,R1)
memw (R3++#4) = R2
} :endloopO0
{ R2 = mpyi (R1,R1) // First epilogue stage
memw (R3++#4) = R2

}
memw (R3++#4) = R2 // Second epilogue stage
jumpr 1r

In Table 8-2 the kernel section of the pipelined loop performs three iterations of the loop in
parallel:

m  The load for iteration N+2
m  The multiply for iteration N+1

m  The store for iteration N

A drawback to software pipelining is the extra code necessary for the prologue and epilogue
sections of a pipelined loop. The Hexagon processor provides the spN1oop0 instruction to
address this issue, where the “N” in the instruction name indicates a digit in the range 1 to 3. For
example:

P3 = sp2loop0 (start, #10) // Set up pipelined loop

The spN1loop0 instruction is a variant of the 1oop0 instruction: it sets up a normal hardware loop
using SAO and LCO, but also performs the following additional operations:

m  When the spN1loop0 instruction executes, it assigns the truth value false to the predicate
register P3.
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m  After the associated loop executes N times, P3 is automatically set to true.

This feature is known as automatic predicate control. It enables the store instructions in the
kernel section of a pipelined loop to conditionally execute by P3 and thus — because of the way
spNloopO controls P3 — not execute during the pipeline warm-up. This can reduce the code size
of software pipelined loops by eliminating the need for prologue code.

The spNloop0 instruction cannot eliminate the epilogue code from a pipelined loop; however, in
some cases it is possible to do this through the use of programming techniques.

Typically, the issue affecting the removal of epilogue code is load safety. If the kernel section of a
pipelined loop can safely access past the end of its arrays — either because it is known as safe, or
because the arrays are padded at the end — epilogue code is unnecessary. However, if load safety
cannot be ensured, explicit epilogue code is required to drain the software pipeline.

Table 8-3 shows how spN1loop0 and load safety simplify the code shown in Table 8-2.

Table 8-3 Software pipelined loop (using spNloop0)

int foo(int *A, int *result)
{
int i;
for (i=0;1i<100;i++) {
result[il]l= A[1]*A[i];

foo:

{ // load safety assumed
P3 = sp2loop0 (.kernel, #102) // Set up pipelined loop
R3 = R1

}

.falign

.kernel:

{ R1 = memw (RO++#4) // Kernel
R2 = mpyi (R1,R1)
if (P3) memw (R3++#4) = R2

} :endloop0
Jjumpr 1lr

NoTE: The count value that spN1oop0 uses to control the P3 setting is stored in the user status register
USR.LPCFG.
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8.2.5 Loop restrictions

Hardware loops have the following restrictions:

m  The loop setup packet in 1oopN or spNloop0 (Section 8.2.4) cannot contain a speculative
indirect jump, new-value compare jump, or dealloc return.

m  The last packet in a hardware loop cannot contain any program flow instructions (including
jumps or calls).

m  The loop end packet in 1oop0 cannot contain any instruction that changes SAO or LCO.
Similarly, the loop end packet in 1oop1 cannot contain any instruction that changes SA1 or
LC1.

m  The loop end packet in spN1oop0 cannot contain any instruction that changes P3.

noTe: SA1 and LC1 can be changed at the end of 100p0, while SAO and LCO can be changed at the end of
loopl.

8.3 Software branches

Unlike hardware loops, software branches use an explicit instruction to perform a branch
operation. Software branches include jumps, calls, and returns. Several types of jumps are
supported:

= Speculative jumps

m  Compare jumps

m  Register transfer jumps
m  Dual jumps

The target address for branch instructions can be specified as register indirect or PC-relative
offsets. PC-relative offsets are normally less than 32 bits, but can be specified as 32 bits by using
the appropriate syntax in the target operand (Section 8.3.4).

Branch instructions are unconditional or conditional, with the execution of conditional
instructions controlled by a predicate expression. Explicit compare instructions generate a
predicate bit, which is then tested by conditional branch instructions. For example:

Pl = cmp.eqg(R2, R3)
if (Pl) jump end

Jumps and subroutine calls are conditional or unconditional, and support both PC-relative and
register indirect addressing modes. For example:

jump end

jumpr R1

call function

callr R2

The subroutine call instructions store the return address in register R31. Subroutine returns are
performed using a jump indirect instruction through this register. For example:

jumpr R31 // Subroutine return
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Table 8-4 Software branch instructions

Syntax Operation
[if (pred expr)] jump Branch to address specified by register Rs or PC-relative offset.
label Can conditionally execute.
[if (pred expr)] jumpr
Rs
[if (pred expr)] call Branch to address specified by register Rs or PC-relative offset.
label Store subroutine return address in link register LR.
[if (pred expr)] callr Can conditionally execute.
Rs
[if (pred expr)] jumpr Branch to subroutine return address contained in link register LR.
LR Can conditionally execute.

8.3.1 Jumps

Jump instructions change the program flow to a target address that can be specified by either a
register or a PC-relative immediate value. Jump instructions can be conditional based on the
value of a predicate expression.

Table 8-5 lists the jump instructions.

Table 8-5 Jump instructions

Syntax Operation
jump label Direct jump.

Branch to address specified by label.
Label is encoded as PC-relative signed immediate value.

jumpr Rs Indirect jump.
Branch to address contained in general register Rs.

if ([!]1Ps) Jjump Conditional jump.

}abel . Perform jump if predicate expression evaluates to true.
if ([!']1Ps) Jjumpr

Rs

note: Conditional jumps can be specified as speculative (Section 8.4).

8.3.2 Calls

Call instructions jump to subroutines. The instruction performs a jump to the target address and
also stores the return address in the link register LR.

The forms of call are functionally similar to jump instructions and include both PC-relative and
register indirect in both unconditional and conditional forms.

Table 8-6 lists the call instructions.
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Table 8-6 Call instructions

Syntax Operation

call label Direct subroutine call.
Branch to address specified by label, and store return address in register
LR. Label is encoded as PC-relative signed immediate value.

callr Rs Indirect subroutine call.
Branch to address contained in general register Rs, and store return
address in register LR.

if ([!]Ps) call |Conditional call.

label If predicate expression evaluates to true, perform subroutine call to

if ([!]1Ps) specified target address.

callr Rs

8.3.3 Returns

Return instructions return from a subroutine. The instruction performs an indirect jump to the

subroutine return address stored in link register LR.

Returns are implemented as jump register indirect instructions, and support both unconditional

and conditional forms.

Table 8-7 lists the return instructions.

Table 8-7 Return instructions

Syntax Operation
jumpr LR Subroutine return.
Branch to subroutine return address contained in link register
LR.
if ([!]1Ps) jumpr LR Conditional subroutine return.

If predicate expression evaluates to true, perform subroutine
return to specified target address.

dealloc_return

Subroutine return with stack frame deallocate.

Perform deallocframe operation (Section 7.5) and then
perform subroutine return to the target address loaded by
deallocframe from the link register.

if ([!]Ps) dealloc return

Conditional subroutine return with stack frame deallocate.

If predicate expression evaluates to true, perform
deallocframe and subroutine return to the target address
loaded by deallocframe from the link register.

NnoTe: The link register LR is an alias of general register R31. Therefore subroutine returns can be

performed with the instruction jumpr R31.

The conditional subroutine returns (including dealloc return) can be specified as speculative

(Section 8.4).
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8.3.4 Extended branches

When a jump or call instruction specifies a PC-relative offset as the branch target, the offset
value is normally encoded in significantly less than 32 bits. This can limit the ability for programs
to specify “long” branches, which span a large range of the processor’s memory address space.

To support long branches, the jump and cal1 instructions have special versions that encode a full
32-bit value as the PC-relative offset.

NoTE: Such instructions use an extra word to store the 32-bit offset (Section 10.9).

The size of a PC-relative branch offset is expressed in assembly language by optionally prefixing
the target label with the symbol “##” or “#”:

m  “H#” specifies that the assembler must use a 32-bit offset
m “#” specifies that the assembler must not use a 32-bit offset
= No “#” specifies that the assembler use a 32-bit offset only if necessary

For example:

jump ##label // 32-bit offset
call #label // Non 32-bit offset
jump label // Offset size determined by assembler

8.3.5 Branches to and from packets

Instruction packets are atomic: even if they contain multiple instructions, they are referenced
only by the address of the first instruction in the packet. Therefore, branches to a packet can
target only the first instruction of the packet.

Packets can contain up to two branches (Section 8.7). The branch destination can target the
current packet or the beginning of another packet.

A branch does not interrupt the execution of the current packet: all the instructions in the packet
execute, even if they appear in the assembly source after the branch instruction.

If a packet is at the end of a hardware loop, it cannot contain a branch instruction.

8.4 Speculative jumps

Conditional instructions normally depend on predicates that are generated in a previous
instruction packet. However, dot-new predicates (Section 6.1.4) enable conditional instructions to
use a predicate generated in the same packet that contains the conditional instruction.

When dot-new predicates are used with a conditional jump, the resulting instruction is called a
speculative jump. For example:

{
PO = cmp.eqg(R9, #16) // Single-packet compare-and-jump
IF (PO.new) jumpr:t R11 // ... enabled by use of P0.new
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Speculative jumps require the programmer to specify a direction hint in the jump instruction,
indicating whether the conditional jump is expected.

The hint initializes the dynamic branch predictor of the Hexagon processor. When the predictor is
wrong, the speculative jump instruction takes two cycles to execute instead of one (due to a
pipeline stall).

Hints can improve program performance by indicating how speculative jumps are expected to
execute over the course of a program: the more often the specified hint indicates how the
instruction actually executes, the better the performance.

Hints are expressed in assembly language by appending the suffix “:t” or “:nt” to the jump
instruction symbol. For example:

jump:t —The jump instruction is most often taken

jump:nt — The jump instruction is most often not taken

In addition to dot-new predicates, speculative jumps also accept conditional arithmetic
expressions (=0, !=0, >=0, <=0) involving the general register Rs.

Table 8-8 Speculative jump instructions

Syntax Operation

if ([!]Ps.new) jump:t Speculative direct jump.

label . If predicate expression evaluates to true, jump to address

if ([:]Ps.new) Jjump:nt specified by label.

label

if ([!]Ps.new) jumpr:t Rs |Speculative indirect jump.

if ([t]Ps.new) jumpr:nt | |f predicate expression evaluates to true, jump to address in

Rs register Rs.

if (Rs == #0) jump:t label | Speculative direct jump.

ifb (flis == #0) Jjump:nt If predicate Rs = 0 is true, jump to address specified by label.
ape

if (Rs != #0) jump:t label | Speculative direct jump.

ifb (TS t= #0) Jjump:nt If predicate Rs != 0 is true, jump to address specified by label.
ape

if (Rs >= #0) jump:t label | Speculative direct jump.

if (Rs >= #0) Jump:nt If predicate Rs >= 0 is true, jump to address specified by

tabel label.

if (Rs <= #0) jump:t label | Speculative direct jump.

if (Rs <= #0) jump:nt If predicate Rs <= 0 is true, jump to address specified by

tabel label.

NoTe: The hints :t and :nt interact with the predicate value to determine the instruction cycle count.

Speculative indirect jumps are not supported with register Rs predicates.
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8.5 Compare jumps

To reduce code size, the Hexagon processor supports a compound instruction that combines a
compare with a speculative jump in a single 32-bit instruction.

For example:

{
p0 = cmp.eq (R2,R5) // Single-instr compare-and-jump
if (p0.new) jump:nt target // Enabled by compound instruction

}

The register operands in a compare jump are limited to RO through R7 or R16 through R23
(Table 10-3).

The compare and jump instructions in a compare jump are limited to the instructions listed in
Table 8-9. The compare can use predicate PO or P1, while the jump must specify the same
predicate that is set in the compare.

A compare jump instruction is expressed in assembly source as two independent compare and
jump instructions in a packet. The assembler translates the two instructions into a single
compound instruction.

Table 8-9 Compare jump instructions

Compare instruction Jump instruction
Pd = cmp.eqg (Rs, Rt) IF (Pd.new) Jjump:t label
Pd = cmp.gt (Rs, Rt) IF (Pd.new) Jjump:nt label
Pd = cmp.gtu (Rs, Rt) IF (!Pd.new) jump:t label
Pd = cmp.eqg (Rs, #U5) IF (!Pd.new) jump:nt label

Pd = cmp.gt (Rs, #U5)
Pd = cmp.gtu (Rs, #U5)
Pd = cmp.eqg (Rs,#-1)
Pd = cmp.gt (Rs,#-1)
Pd = tstbit (Rs, #0)

8.5.1 New-value compare jumps

A compare jump instruction can access a register that is assigned a new value in the same
instruction packet (Section 3.3). This feature is expressed in assembly language by the following
changes:

m  Appending the suffix “.new” to the new-value register in the compare

m  Rewrite the compare jump so its constituent compare and jump operations appear as a single
conditional instruction

For example:
// Load-compare-and-jump packet enabled by new-value compare Jjump
{

RO = memw (R2+#8)
if (cmp.eg(RO.new, #0)) jump:nt target
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New-value compare jump instructions have the following restrictions:
= They are limited to the instruction forms listed in Table 8-10.
m  They cannot be combined with another jump instruction in the same packet.

m If aninstruction produces a 64-bit result or performs a floating-point operation
(Section 4.1.2), its result registers cannot be used as the new-value register.

= If aninstruction uses auto-increment or absolute-set addressing mode (Section 5.8), its
address register cannot be used as the new-value register.

= If the instruction that sets a new-value register is conditional (Section 6.1.2), it must always
execute.

If the specified jump direction hint is wrong (Section 8.4), a new-value compare jump takes three
cycles to execute instead of one. While this penalty is one cycle longer than in a regular
speculative jump, the overall performance is still better than using a regular speculative jump
(which must execute an extra packet in all cases).

noTe: New-value compare jump instructions are assigned to instruction class NV, which execute only in
Slot 0. The instruction that assigns the new value must execute in Slot 1, 2, or 3.

Table 8-10 New-value compare jump instructions

if ([!'lcmp.eq (Rs.new, Rt)) Jjump:[hint]
label

if ([!'lcmp.gt (Rs.new, Rt)) Jjump:[hint]
label

if ([!lcmp.gtu (Rs.new, Rt)) Jjump:[hint]
label

if ([!'lcmp.gt (Rs, Rt.new)) Jjump:[hint]
label

if ([!'lcmp.gtu (Rs, Rt.new)) jump:[hint]
label

if ([!lcmp.eq (Rs.new, #ub)) Jjump:[hint]
label

if ([!lcmp.gt (Rs.new, #u5)) Jjump:[hint]
label

if ([!lcmp.gtu (Rs.new ,#u5)) jump: [hint]
label

if ([!lcmp.eq (Rs.new, #-1)) jump: [hint]
label

if ([!lcmp.gt (Rs.new, #-1)) jump:[hint]
label

if ([!]ltstbit (Rs.new, #0)) jump:[hint]
label
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8.6 Register transfer jumps

To reduce code size, the Hexagon processor supports a compound instruction that combines a
register transfer with an unconditional jump in a single 32-bit instruction.

For example:
{
jump target // Jump to label “target”
Rl = R2 // Assign contents of reg R2 to Rl

}

The source and target register operands in the register transfer are limited to RO through R7 or
R16 through R23 (Table 2-4).

The target address in the jump is a scaled 9-bit PC-relative address value (as opposed to the 22-bit
value in the regular unconditional jump instruction).

A register transfer jump instruction is expressed in assembly source as two independent
instructions in a packet. The assembler translates the instructions into a single compound
instruction.

Table 8-11 Register transfer jump instructions

Syntax Operation

jump label; Register transfer jump.
Rd=Rs
Perform register transfer and branch to address specified by label.
Label is encoded as PC-relative 9-bit signed immediate value.

jump label; Register transfer immediate jump.
Rd=#u6
Perform register transfer (of 6-bit unsigned immediate value) and
branch to address specified by label.

Label is encoded as PC-relative 9-bit signed immediate value.

8.7 Dual jumps

Two software branch instructions (referred to here as “jumps”) can appear in the same
instruction packet, under the conditions listed in Table 8-12.

The first jump is defined as the jump instruction at the lower address, and the second jump as the
jump instruction at the higher address.

Unlike most packetized operations, dual jumps do not execute in parallel (Section 3.3.1). Instead,
the two jumps are processed in a well-defined order in a packet:

1. Evaluate the predicate in the first jump.
2. [Ifthe first jump is taken, ignore the second jump.

3. If the first jump is not taken, perform the second jump.
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NOTE:

Table 8-12 Dual jump instructions

. i First jump | Second jump
Instruction Description in packet? in packet?
jump Direct jump No Yes
if ([!]1Ps[.new]) jump Conditional jump Yes Yes
call Direct calls No Yes
if ([!]Ps) call
Pd=cmp.xx ; if Compare jump Yes Yes
([!]Pd.new) Jjump
if ([!]lcmp.xx(Rs.new, New-value compare jump No No
Rt)) Jjump
jumpr Indirect jumps No No
if ([!]Ps[.new]) Jjumpr Indirect calls
callr dealloc_return
if ([!']Ps) callr
dealloc_return
if ([!']Ps[.new])
dealloc return
endloopN Hardware loop end No No

If a call is ignored in a dual jump, the link register LR does not change.

8.8 Hint indirect jump target

NOTE:

Because it obtains the jump target address from a register, the jumpr instruction (Section 8.3.1)
normally causes the processor to stall for one cycle.

To avoid the stall penalty caused by a jumpr instruction, the Hexagon processor supports the
jump hint instruction hintjr, which can be specified before the jumpr instruction.

The hintjr instruction indicates that the program is about to execute a jumpr to the address
contained in the specified register.

Table 8-13 Jump hint instruction

Syntax Operation

hintjr (Rs) Informs the processor that the jumpr (Rs) instruction is about to
be performed.

To prevent a stall, the hintjr instruction must execute at least two packets before the
corresponding jumpr instruction.

The hintjr instruction is not needed for jumpr instructions used as returns (Section 8.3.3),
because in this case the Hexagon processor automatically predicts the jump targets based on the
most recent nested call instructions.
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8.9 Pauses

8.10

NOTE:

NOTE:

Pauses suspend the execution of a program for a period of time, and put it into low-power mode.
The program remains suspended for the duration specified in the instruction.

The pause instruction accepts an unsigned 8-bit immediate operand that specifies the pause
duration in terms of cycles. The maximum possible duration is 263 cycles (255+8).

Hexagon processor interrupts cause a program to exit the paused state before its specified
duration has elapsed.

The pause instruction is useful for implementing user-level low-power synchronization
operations (such as spin locks).

Table 8-14 Pause instruction

Syntax Operation
pause (#u8) Suspend program in low-power mode for specified cycle
duration.
Exceptions

Exceptions are internally-generated disruptions to the program flow.

The Hexagon processor OS handles fatal exceptions by terminating the execution of the
application system. The user is responsible for fixing the problem and recompiling their
applications.

The error messages generated by exceptions include the following information to assist in
locating the problem:

m  Cause code — Hexadecimal value indicating the type of exception that occurred
m  User IP — PC value indicating the instruction executed when exception occurred

m  Bad VA - Virtual address indicating the data accessed when exception occurred

The cause code, user IP, and Bad VA values are stored in the Hexagon processor system control
registers SSR[7:0], ELR, and BADVA respectively.

If multiple exceptions occur simultaneously, the exception with the lowest error code value has
the highest exception priority.

If a packet contains multiple loads, or a load and a store, and both operations have an exception
of any type, all Slot 1 exceptions process before any Slot 0 exception processes.

V65 defines an additional event (with cause code 0x17) to indicate an instruction-cache error.
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Table 8-15 V71 processor exceptions

Cause o
code Event type Event description Notes
0x0 Reset Software thread reset. Non-maskable,
highest priority
0x01 Precise, Unrecoverable BIU error (bus error, timeout, L2 | Non-maskable
unrecoverable | parity error, and so on).
0x03 Precise, Double exception (exception occurs while Non-maskable
unrecoverable | SSR[EX]=1).
0x11 Precise Privilege violation: User/Guest mode execute to | Non-maskable
page with no execute permissions (X=0).
0x12 | Precise Privilege violation: User mode execute to a Non-maskable
page with no user permissions (X=1, U=0).
0x15 | Precise Invalid packet. Non-maskable
0x16 | Precise lllegal execution of coprocessor instruction. Non-maskable
0x17 | Precise Instruction cache error. Non-maskable
0x1A | Precise Privilege violation: Executing a Guest mode Non-maskable
instruction in User mode.
0x1B | Precise Privilege violation: Executing a supervisor Non-maskable
instruction in User/Guest mode.
0x1D | Precise, Packet with multiple writes to the same Non-maskable
unrecoverable | destination register.
Ox1E |Precise, Program counter values that are not properly Non-maskable
unrecoverable | aligned.
0x20 | Precise Load to misaligned address. Non-maskable
0x21 Precise Store to misaligned address. Non-maskable
0x22 Precise Privilege violation: User/Guest mode read to Non-maskable
page with no read permission (R=0).
0x23 | Precise Privilege violation: User/Guest mode write to Non-maskable
page with no write permissions (W=0).
0x24 | Precise Privilege violation: User mode read to page with | Non-maskable
no user permission (R=1, U=0).
0x25 | Precise Privilege violation: User mode write to page with | Non-maskable
no user permissions (W=1, U=0).
0x26 | Precise Coprocessor VMEM add