

ACKNOWLEDGEMENT

By utilizing this website and/or documentation, I hereby acknowledge as follows:

Effective October 1, 2012, QUALCOMM Incorporated completed a corporate reorganization in

which the assets of certain of its businesses and groups, as well as the stock of certain of its
direct and indirect subsidiaries, were contributed to Qualcomm Technologies, Inc. (QTI), a wholly-
owned subsidiary of QUALCOMM Incorporated that was created for purposes of the
reorganization.

Qualcomm Technology Licensing (QTL), the Company’s patent licensing business, continues

to be operated by QUALCOMM Incorporated, which continues to own the vast majority of the
Company’s patent portfolio. Substantially all of the Company’s products and services businesses,
including QCT, as well as substantially all of the Company’s engineering, research and
development functions, are now operated by QTI and its direct and indirect subsidiaries1. Neither
QTI nor any of its subsidiaries has any right, power or authority to grant any licenses or other
rights under or to any patents owned by QUALCOMM Incorporated.

No use of this website and/or documentation, including but not limited to the downloading of

any software, programs, manuals or other materials of any kind or nature whatsoever, and no
purchase or use of any products or services, grants any licenses or other rights, of any kind or
nature whatsoever, under or to any patents owned by QUALCOMM Incorporated or any of its
subsidiaries. A separate patent license or other similar patent-related agreement from
QUALCOMM Incorporated is needed to make, have made, use, sell, import and dispose of any
products or services that would infringe any patent owned by QUALCOMM Incorporated in the
absence of the grant by QUALCOMM Incorporated of a patent license or other applicable rights
under such patent.

Any copyright notice referencing QUALCOMM Incorporated, Qualcomm Incorporated,

QUALCOMM Inc., Qualcomm Inc., Qualcomm or similar designation, and which is associated
with any of the products or services businesses or the engineering, research or development
groups which are now operated by QTI and its direct and indirect subsidiaries, should properly
reference, and shall be read to reference, QTI.

1 The products and services businesses, and the engineering, research and development groups, which are now operated by QTI and its
subsidiaries include, but are not limited to, QCT, Qualcomm Mobile & Computing (QMC), Qualcomm Atheros (QCA), Qualcomm Internet
Services (QIS), Qualcomm Government Technologies (QGOV), Corporate Research & Development, Qualcomm Corporate Engineering
Services (QCES), Office of the Chief Technology Officer (OCTO), Office of the Chief Scientist (OCS), Corporate Technical Advisory Group,
Global Market Development (GMD), Global Business Operations (GBO), Qualcomm Ventures, Qualcomm Life (QLife), Quest, Qualcomm
Labs (QLabs), Snaptracs/QCS, Firethorn, Qualcomm MEMS Technologies (QMT), Pixtronix, Qualcomm Innovation Center (QuIC),
Qualcomm iSkoot, Qualcomm Poole and Xiam.

Hexagon Virtual Machine
Specification [Draft]

80-NB419-3 Rev. A

August 4, 2011

This document is made available subject to the terms specified in http://www.qualcomm.com/site/legal.

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other
countries. Other product and brand names may be trademarks or registered trademarks of their respective owners. ARM is a
registered trademark of ARM Limited. Hexagon is a trademark of QUALCOMM Incorporated in the United States and other
countries.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to
U.S. and international law is strictly prohibited.

QUALCOMM Incorporated
5775 Morehouse Drive

San Diego, CA 92121-1714
U.S.A.

Copyright ©2011 QUALCOMM Incorporated.
All rights reserved.

http://www.qualcomm.com/site/legal

80-NB419-3 Rev. A 2
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

1 Introduction
1.1 Overview .. 8
1.2 Architecture .. 8
1.3 Modes ... 9
1.4 Instructions and events ... 9
1.5 Virtual privileged resource model .. 9
1.6 Using this manual... 10
1.7 Terminology ... 10
1.8 Notation .. 11

2 HVM User Mode
2.1 Overview .. 12
2.2 Restrictions... 12

2.2.1 Memory addressing.. 12

3 HVM Guest Mode
3.1 Overview .. 13
3.2 Guest mode capabilities.. 14

3.2.1 Event handling ... 14
3.2.2 Interrupts .. 14
3.2.3 Exceptions.. 14
3.2.4 Cache control ... 15
3.2.5 Memory management .. 15
3.2.6 Processor resource management .. 15

3.3 Restrictions... 16
3.3.1 Memory addressing.. 16

4 Initial State
4.1 Overview .. 17
4.2 Virtual processor... 17
4.3 Registers ... 17
4.4 Memory .. 17
4.5 Initial memory map .. 18

5 Event Model
5.1 Overview .. 19
5.2 Event model.. 19
5.3 Event registers .. 20

5.3.1 GELR ... 20

Contents

80-NB419-3 Rev. A 3
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Contents

5.3.2 GSR.. 21
5.3.3 GOSP ... 21
5.3.4 GBADVA... 21

5.4 Event types ... 22
5.5 Event vector registration .. 22
5.6 Event handler return ... 23
5.7 Virtual instructions for event management .. 23
5.8 Programmers note... 23

6 Interrupts
6.1 Overview .. 24
6.2 Virtual interrupt controller.. 24
6.3 Interrupt type and polarity.. 25
6.4 Interrupt masks ... 25
6.5 Interrupt acknowledgement.. 25
6.6 Interrupt enable... 25
6.7 Virtual instructions for interrupt management ... 26

7 Exceptions
7.1 Overview .. 27
7.2 Exception classes.. 27
7.3 General exceptions ... 28
7.4 Trap exceptions .. 29
7.5 Virtual machine check .. 29

8 Cache Control
8.1 Overview .. 30
8.2 HVM cache operations... 30
8.3 Virtual instructions for cache control ... 31

9 Memory Management
9.1 Overview .. 32
9.2 Underlying logical/physical memory ... 32
9.3 Linear translations .. 32
9.4 Virtual page table entries.. 34

9.4.1 Page directory entries... 35
9.4.2 Page table entries ... 35
9.4.3 Cache attributes.. 37

9.5 Setting new memory maps ... 38
9.6 Flushing stale memory maps.. 38
9.7 Virtual instructions for memory management.. 38

80-NB419-3 Rev. A 4
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Contents

10 Processor Resource Management
10.1 Overview .. 39
10.2 Timer .. 39
10.3 Processor suspension.. 40
10.4 Processor creation... 40
10.5 Virtual instructions for processor management.. 41

11 Trust Model
11.1 Overview .. 42

12 Debug
12.1 Overview .. 43
12.2 User-mode software debug... 43
12.3 Guest-mode software debug... 43

A HVM Instructions
A.1 Overview .. 44
A.2 Instruction properties.. 46

A.2.1 VMCACHE.. 47
A.2.2 VMCLRMAP... 49
A.2.3 VMGETIE.. 50
A.2.4 VMINTOP ... 51
A.2.5 VMGETTIME.. 53
A.2.6 VMNEWMAP ... 54
A.2.7 VMRTE.. 56
A.2.8 VMSETIE .. 57
A.2.9 VMSETTIME .. 58
A.2.10 VMSETVEC .. 59
A.2.11 VMSTART ... 60
A.2.12 VMSTOP ... 61
A.2.13 VMVERSION.. 62
A.2.14 VMVPID.. 63
A.2.15 VMWAIT ... 64
A.2.16 VMYIELD ... 65

B Determining HVM Environment
B.1 Overview .. 66
B.2 Accessing environment version.. 66
B.3 Virtual instructions for determining environment .. 66

80-NB419-3 Rev. A 5
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Figures

Figures

Figure 1-1 HVM architecture.. 8
Figure 6-1 Virtual interrupt controller .. 24
Figure 9-1 Translation list entry.. 33
Figure 9-2 Page table entry (generic).. 34
Figure 9-3 Page directory entry .. 35
Figure 9-4 Page table entry (L1 – 4MB)... 35
Figure 9-5 Page table entry (L1 – 16MB)... 35
Figure 9-6 Page table entry (L2) ... 35

80-NB419-3 Rev. A 6
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Tables

Tables

Table 1-1 Terminology... 10
Table 5-1 Event registers.. 20
Table 5-2 GSR field encodings .. 21
Table 5-3 Event types... 22
Table 5-4 Virtual instructions for event management .. 23
Table 6-1 Virtual instructions for interrupt management... 26
Table 7-1 General exceptions... 28
Table 7-2 Machine check exceptions ... 29
Table 8-1 HVM cache control operations .. 30
Table 8-2 Virtual instructions for event management .. 31
Table 9-1 Translation list entry fields .. 33
Table 9-2 L1 page table entry types ... 34
Table 9-3 Page table entry fields.. 36
Table 9-4 LPN bits used as function of page size .. 37
Table 9-5 Cache attribute types.. 37
Table 9-6 Virtual instructions... 38
Table 10-1 Virtual instructions for processor management ... 41
Table A-1 HVM virtual instruction summary... 45
Table B-1 Virtual instructions for determining environment ... 66

80-NB419-3 Rev. A 7
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Revision History

Revision History

Revision Date Description

A August 2011 Initial version of document.

80-NB419-3 Rev. A 8
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

1 Introduction

1.1 Overview

The Hexagon™ Virtual Machine (HVM) provides system programmers with an
abstraction layer which enables multiple operating systems and other clients to execute
concurrently on a single Hexagon processor, through the virtualization and partitioning of
physical hardware resources.

For example, HVM enables the Hexagon processor to concurrently run the following
software systems while enforcing strict resource protection between them:

■ A fine-tuned real-time application managing special devices and services.

■ A general-purpose operating system implementing a user interface and
application stack.

HVM virtualizes the Hexagon processor itself as multiple virtual processors which
execute concurrently, while ensuring security and quality of service.

1.2 Architecture

Figure 1-1 shows the major functional units of the HVM architecture.

Figure 1-1 HVM architecture

Hardware

Virtual Machine Monitor

Hexagon Virtual Machine

Virtual
Processor

Virtual
Processor

Virtual
Processor

Virtual
Interrupt

Controller

Logical
Memory

80-NB419-3 Rev. A 9
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Introduction

The Hexagon Virtual Machine consists of the virtualized programming environment in
which a client software system runs. It includes the following items:

■ One or more virtual processors

■ Virtual interrupt controller

■ Logical memory

The virtual processors (which can be started and stopped) share the virtual interrupt
controller and logical memory.

The Virtual Machine Monitor (VMM) is a software layer which manages the hardware
resources and provides them to HVM in their virtualized form.

The hardware layer consists of the Hexagon hardware resources. This includes the
Hexagon processor and related subsystems (memory, interrupt controller, etc.) which are
managed by the VMM.

NOTE The VMM supports multiple concurrent HVM instances – each instance is
referred to as a virtual machine.

1.3 Modes

HVM supports two levels of privilege within the virtual machine:

■ HVM User mode

■ HVM Guest mode

Guest mode is privileged with respect to User mode, but neither mode is privileged to
directly access the underlying hardware.

1.4 Instructions and events

HVM provides virtual instructions and events which control the transitions between User
and Guest modes, and which enable a guest operating system to manage the privileged
virtual resources.

1.5 Virtual privileged resource model

The HVM virtual privileged resource model was designed with the following goals:

■ Expose the minimum amount of detail on the underlying privileged hardware
resources.

■ Perform as efficiently as possible when implemented in software on the Hexagon
V2 processor and later processor versions.

■ Define interfaces to support their implementation in hardware (either whole or
partial) on future Hexagon processor versions.

80-NB419-3 Rev. A 10
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Introduction

1.6 Using this manual

This document is intended for system programmers who are targeting their software for
operation on an HVM Monitor or Hypervisor. It is also intended as a reference for HVM
implementors.

1.7 Terminology

Except where otherwise noted, the terms used to describe HVM are identical to those used
to describe the Hexagon processor architecture.

Table 1-1 Terminology

Term Definition

Event record Data structure passed on the Guest-mode stack during a
virtual event, providing context information necessary for the
handling of the event.

Guest mode Operating mode under which operating systems run on
HVM to provide various services to user applications.

GBADVA Guest Bad Virtual Address

GELR Guest Event Link Register

GOSP Guest Other Stack Pointer

GSR Guest Status Register

HVM Hexagon Virtual Machine

Virtualized programming environment in which a client
software system runs. It includes one or more virtual
processors. logical memory, and a virtual interrupt controller.

Logical memory Virtual machine memory accessible by HVM clients.

Logical memory is the memory that is not mapped by the
HVM memory management unit (MMU) for use in
constructing virtual memory maps in HVM.

PTE Page table entry

User mode Operating mode under which most HVM applications run.

Virtual event Asynchronous invocation of Guest mode by the virtual
machine.

Virtual instruction An operation requesting a function of HVM that cannot be
expressed by a native Hexagon processor instruction.

Virtual instructions are generally implemented as Hexagon
instructions which trap to the underlying hardware
Supervisor mode, which performs the necessary function.

Virtual machine HVM instance running on the VMM.

80-NB419-3 Rev. A 11
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Introduction

1.8 Notation

This document uses the same notational conventions used in the Hexagon Programmer’s
Reference Manual. For details see the appropriate version of that document.

Virtual processor HVM resource that is necessary to run a program.

A virtual machine can support multiple instances of a virtual
processor, with each instance executing concurrently and
sharing common memory and I/O resources.

VMM Virtual Machine Monitor

Software layer which underlies HVM. It manages the
hardware resources and provides them to HVM in their
virtualized form.

Table 1-1 Terminology (continued)

Term Definition

80-NB419-3 Rev. A 12
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

2 HVM User Mode

2.1 Overview

Except for the restrictions noted below, HVM User mode is identical to the processor
architecture defined in the Hexagon Programmer’s Reference Manual.

Most HVM clients run in User mode.

2.2 Restrictions

HVM User mode has the following restrictions:

■ Memory addressing

2.2.1 Memory addressing

The VMM reserves the high 16 MB of the User-mode address space (addresses
0xff00_0000 to 0xffff_ffff) for its own use.

Any attempts by an HVM client to load, store, or execute from addresses in this range will
result in a protection-violation event being posted to Guest mode.

NOTE This restriction also applies to the Guest-mode address space (Section 3.3.1).

80-NB419-3 Rev. A 13
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

3 HVM Guest Mode

3.1 Overview

HVM Guest mode is a superset of HVM User mode (Chapter 2).

In addition to the standard Hexagon processor architecture supported by User mode, Guest
mode defines virtual instructions and virtual events to support the implementation of
protected, multi-user, multi-tasking operating systems that run on HVM.

Virtual instructions are extensions to the Hexagon instruction set – they invoke HVM
operations that cannot be performed by a regular Hexagon instruction. Virtual instructions
are generally implemented as Hexagon traps which switch the processor to its Supervisor
mode.

Virtual events are asynchronous transfers from User to Guest mode – they provide a
controlled way to switch between the HVM modes. Virtual events can be triggered by
exceptions or interrupts.

NOTE HVM virtual instructions execute like regular processor instructions, but are
always treated as solo instructions which cannot be grouped in packets with
other instructions.

Appendix A provides details on the encoding and semantics of the virtual
instructions.

80-NB419-3 Rev. A 14
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Guest Mode

3.2 Guest mode capabilities

HVM Guest mode has the following capabilities:

■ Event handling

■ Interrupts

■ Exceptions

■ Cache control

■ Memory management

■ Processor resource management

3.2.1 Event handling

HVM can transfer control asynchronously to handle events:

■ Handler vectors must be registered using privileged virtual instruction vmsetvec

■ Event handling is terminated with virtual instruction vmrte

For more information see Chapter 5.

3.2.2 Interrupts

HVM supports Hexagon interrupts as a special case of asynchronous events:

■ Interrupts are individually maskable

■ Interrupts can be collectively enabled and disabled

■ Interrupts are managed with virtual instructions vmintop, vmsetie, and vmgetie

For more information see Chapter 6.

3.2.3 Exceptions

HVM supports Hexagon exceptions as another type of event:

■ Exceptions are not maskable (unlike interrupts)

For more information see Chapter 7.

80-NB419-3 Rev. A 15
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Guest Mode

3.2.4 Cache control

HVM supports certain Hexagon cache control operations:

■ Privileged operations (Guest mode only)

■ Managed with virtual instruction vmcache

For more information see Chapter 8.

3.2.5 Memory management

HVM implements a virtual memory management unit:

■ Privileged operations (Guest mode only)

■ Autonomous page table walking

■ Page tables in canonical HVM format

■ Managed with virtual instructions vmnewmap and vmclrmap

For more information see Chapter 9.

3.2.6 Processor resource management

HVM supports virtual processors and a fine-grained timer:

■ Privileged operations (Guest mode only)

■ Create and destroy concurrently-executing virtual processor instances

■ Virtual processors managed with virtual instructions vmstart and vmstop

■ High-precision 64-bit timer

■ Timer managed with virtual instructions vmgettime and vmsettime

For more information see Chapter 10.

80-NB419-3 Rev. A 16
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Guest Mode

3.3 Restrictions

HVM Guest mode has the following restrictions:

■ Memory addressing

3.3.1 Memory addressing

The VMM reserves the high 16 MB of the Guest-mode address space (addresses
0xff00_0000 to 0xffff_ffff) for its own use.

Any attempts by an HVM client to load, store, or execute from addresses in this range will
result in a protection-violation event being posted to Guest mode.

NOTE This restriction also applies to the User-mode address space (Section 2.2.1).

80-NB419-3 Rev. A 17
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

4 Initial State

4.1 Overview

This chapter describes the initial state of the following HVM resources:

■ Virtual processor

■ Registers

■ Memory

4.2 Virtual processor

A virtual processor begins executing in Guest mode. The virtual MMU is always active.

4.3 Registers

For virtual processors the initial value of the program counter (PC) and stack pointer are
specified externally: either as parameters to commands passed to the VMM, or as
arguments to the virtual instruction vmstart which creates a new virtual processor
instance (Section 10.4).

The initial values of all other registers are undefined – these registers must be initialized
by software starting at the initial PC.

Implementors Note: While register values are undefined at the startup of a virtual
processor, if the hardware processor resources are re-assigned, the register values of
trusted virtual processors must never be inherited by untrusted virtual processors.

4.4 Memory

When an initial program is loaded by the VMM, the program image may contain
initialized data. Otherwise the initial memory state of HVM consists of undefined memory
values.

Implementors Note: While memory values are undefined at startup of a virtual machine,
in the event that the hardware resources are re-assigned, memory values of trusted virtual
machines must never be inherited by untrusted virtual machines.

80-NB419-3 Rev. A 18
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Initial State

4.5 Initial memory map

In the HVM initial memory map, the logical memory segment that the initial program is
loaded into is mapped to the identical virtual address range, with consecutive virtual pages
mapped 1:1 to consecutive logical pages.

The page tables describing the initial map are outside the initial logical address space, and
cannot be modified by HVM clients (Section 2.2.1, Section 3.3.1).

Any other mapping must be created by Guest-mode software constructing a new set of
page tables and activating them with virtual instruction vmnewmap (Section 9.5).

80-NB419-3 Rev. A 19
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

5 Event Model

5.1 Overview

HVM supports virtual events (or more simply, events) as a means for transferring control
between User-mode applications and Guest-mode operating systems. HVM events can be
caused by Hexagon processor exceptions or interrupts.

5.2 Event model

Events are specified by their assigned event number. When an event occurs, HVM uses the
event number as an index into the event vector table to determine which event handler will
process the event. The vector table and handlers are defined by the guest operating system.

Before it begins receiving events, the guest operating system must register the Guest
Event Vector Base (GEVB) value with HVM. It does this with the virtual instruction
vmsetvec.

HVM responds to an event by storing event-related information (called the event record)
in the dedicated event registers (Section 5.3), and then transferring control to the event
vector specified by the event number.

Event handlers access the event registers with the virtual instructions vmgetregs and
vmsetregs – the guest operating system is responsible for managing these registers.

When an event is dispatched to a handler, interrupts are disabled to the virtual processor.
Interrupts are re-enabled either explicitly when the handler executes the virtual instruction
vmsetie, or implicitly when the handler returns by executing the virtual instruction
vmrte. (vmrte restores the interrupt enable value from the event record.)

When HVM transfers control between User and Guest modes, it swaps the contents of the
Guest Other Stack Pointer (GOSP) and R29 (the Hexagon processor stack pointer).

If an event handler causes an additional event, the original event record is lost because the
event registers are overwritten. Similarly, when returning from an event, the event
registers are reloaded by the guest operating system before executing the virtual
instruction vmrte. Care must be taken to ensure that no event occurs during this time.

NOTE If an event occurs before GEVB is configured, HVM terminates the current
virtual processor (Section 10.4).

80-NB419-3 Rev. A 20
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Event Model

5.3 Event registers

Table 5-1 defines the four 32-bit registers that are used to store HVM event records
(Section 5.2).

The Hexagon processor instruction set does not provide instructions for directly accessing
the event registers. Instead, these registers are accessed with the virtual instructions
vmgetregs and vmsetregs.

NOTE Future Hexagon processor versions may support direct access to the event
registers, eliminating the need for these virtual instructions.

5.3.1 GELR

GELR is the Guest Event Link Register.

It contains a 32-bit virtual address value specifying where the virtual processor resumes
executing after an event is serviced.

If a guest operating system wishes a processed event to return to a different address in
User mode (for example, in the case of a user-level context switch), the GELR value can be
modified before the virtual instruction vmrte is executed.

Table 5-1 Event registers

Register Alias Name

GELR G0 Guest Event Link Register

GSR G1 Guest Status Register

GOSP G2 Guest Other Stack Pointer

GBADVA G3 Guest Bad Virtual Address value

80-NB419-3 Rev. A 21
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Event Model

5.3.2 GSR

GSR is the Guest Status Register.

It provides information about the virtual processor state when the event occurred, and
about the nature of the event beyond what is implicitly indicated by the event vector.

Table 5-2 describes the fields of the GSR word.

NOTE The User Mode and Interrupt Enable mask of the virtual processor are
restored from GSR by a vmrte instruction.

5.3.3 GOSP

GOSP is the Guest Other Stack Pointer.

When executing in User mode, this register contains the Guest-mode stack pointer.

If an event occurs during User-mode execution, HVM swaps the contents of GOSP and
R29 (the Hexagon processor stack pointer). Thus when the event vector is reached, R29
contains the Guest-mode stack pointer, and GOSP stores the User-mode stack pointer.

When the virtual instruction vmrte switches from Guest back to User mode, HVM swaps
R29 and GOSP again, saving the Guest-mode stack pointer in GOSP and restoring the User-
mode stack pointer in R29.

5.3.4 GBADVA

GBADVA is the Guest Bad Virtual Address value.

When servicing a memory-related event (page fault, alignment error, permissions
violation), GBADVA contains the 32-bit virtual address that caused the event.

31 30 29 24 23 16 15 0

UM IE Reserved Reserved Cause

Table 5-2 GSR field encodings

Bits Name Description

31 UM Set if virtual processor was executing in User mode when the event
was taken, clear otherwise.

30 IE Set if virtual processor had interrupts enabled when the event was
taken, clear otherwise.

15:0 Cause Cause code associated with an Exception or Interrupt event.

80-NB419-3 Rev. A 22
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Event Model

5.4 Event types

Table 5-3 summarizes the event types.

NOTE The Hexagon architecture specifies that if an instruction packet contains
multiple exception-causing instructions, then Slot 1 exceptions are resolved
before Slot 0 exceptions. If a single instruction has multiple exceptions, the
priority is listed in the table from highest (first row) to lowest (last row).

5.5 Event vector registration

Guest-mode software can register a service vector for an event by executing the virtual
machine instruction vmsetvec, which is passed a 32-bit Guest-mode virtual address.

Events begin executing at the address computed by the following formula:

GEBV + (event_number * 4)

Table 5-3 Event types

Event
Number

Event Name Event Description Notes

0 Reserved

1 Machine
Check

Unrecoverable virtual machine
state (Section 7.5)

Non-maskable exception.

Virtual machine execution
terminates if not handled.

2 General
Exception

Precise internal hardware or
software exception (Section 7.3)

Non-maskable exception

3, 4 Reserved

5 Trap0 SW Trap0 instruction
(Section 7.4)

Non-maskable exception

6 Reserved

7 Interrupt General external interrupts
(Chapter 6)

Maskable.

Interrupt priority decreases with
increasing interrupt number,
Interrupt0 being highest.

80-NB419-3 Rev. A 23
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Event Model

5.6 Event handler return

Event handlers return by executing the virtual instruction vmrte. This instruction uses the
values stored in the event registers to restore the following states:

■ User/Guest mode and interrupt enable (stored in GSR.UM and GSR.IE)

■ Program counter (stored in GELR)

■ Stack pointer (stored in GOSP) if the value in GSR.UM indicates that the mode
switch is from Guest to User

NOTE vmrte assumes that a valid event record is stored in the event registers.

5.7 Virtual instructions for event management

Table 5-4 summarizes the virtual instructions used for event management.

NOTE For details on these instructions see Appendix A.

5.8 Programmers note

An HVM instance begins executing in Guest mode, so the only way to execute software in
User mode is to perform the following steps:

1. Set the event registers so the GSR.UM bit is set, and the GELR value specifies code
to be executed in User mode.

2. Execute a vmrte instruction.

Table 5-4 Virtual instructions for event management

Instruction Description

vmsetvec Register event vector table

vmgetregs Get event register values

vmsetregs Set event register values

vmsetie Enable interrupts

vmrte Return from event servicing

80-NB419-3 Rev. A 24
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

6 Interrupts

6.1 Overview

In HVM interrupts are handled as a special case of events. When an interrupt event is
dispatched, the GSR.Cause value in the event record is set to the interrupt number.

Interrupts can be enabled or completely disabled per virtual processor by setting the
virtual state Interrupt Enabled. When an event is taken, Interrupt Enabled is
cleared and the previous Interrupt Enabled state is stored in GSR.

6.2 Virtual interrupt controller

HVM defines a virtual interrupt controller to manage interrupt events flowing into the
multiple virtual processors.

Figure 6-1 Virtual interrupt controller

VP 0 VP 1 VP N

0 1 2 3 N 0 1 2 3 N 0 1 2 3 NLocal Enable

Global Enable 0 1 2 3 N

Pending
Interrupts

0 1 2 3 N

...

...

...

...

80-NB419-3 Rev. A 25
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Interrupts

Each interrupt has a global enable, as well as a per-virtual processor local enable:

■ If an interrupt is disabled globally, no virtual processor takes the interrupt.

■ If an interrupt is disabled locally, the specific virtual processor does not take the
interrupt.

By manipulating the local and global enable values, interrupts can be steered to specific
virtual processors, or received by any available virtual processor.

When an interrupt arrives, its bit is set in the pending-interrupt bit vector. If the interrupt is
globally and locally enabled for a virtual processor that has interrupts enabled, the virtual
processor may take the interrupt: the PC changes to the interrupt event, and the interrupt
number is stored in GSR.CAUSE. In addition, the interrupt is cleared from the pending
register and automatically disabled globally.

NOTE At most one virtual processor takes a given interrupt. Interrupting a virtual
machine and clearing the pending bit and global enable are atomic operations.

6.3 Interrupt type and polarity

The VMM is responsible for configuring interrupt type and polarity.

6.4 Interrupt masks

HVM has both a per-interrupt global enable bit and a per-interrupt, per-virtual-processor
enable bit. These bits can be modified by the virtual instruction vmintop, and can be used
to mask interrupts either for a specific processor or for all processors.

6.5 Interrupt acknowledgement

When HVM posts an interrupt event, the interrupt is disabled globally. Thus, any further
occurrences of that interrupt are not posted on any virtual processor until the interrupt
service routine re-enables it using the GLOBEN operation of the virtual instruction
vmintop.

6.6 Interrupt enable

Each virtual processor has an Interrupt Enabled status. This status can be checked
using the virtual instruction vmgetie, and modified using the virtual instruction vmsetie
(as well as vmrte). When a virtual processor has the Interrupt Enabled status disabled
(set to zero), it takes no interrupts.

The Interrupt Enabled status is automatically set to Disabled on every taken event
(exception or interrupt), as well as when the virtual processor starts.

80-NB419-3 Rev. A 26
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Interrupts

6.7 Virtual instructions for interrupt management

Table 6-1 summarizes the virtual instructions used for interrupt management.

The vmintop operation “Set interrupt affinity” locally enables an interrupt for the
specified virtual processor, and locally disables it for all other virtual processors.

NOTE For details on these instructions see Appendix A.

Table 6-1 Virtual instructions for interrupt management

Instruction Description

vmintop Perform interrupt-related operation:

■ Globally enable interrupt

■ Globally disable interrupt

■ Locally enable interrupt

■ Locally disable interrupt

■ Set interrupt affinity

■ Post software interrupt

■ Check for pending interrupt

■ Take pending interrupt

■ Clear pending interrupt

■ Get interrupt pending, global enable, local enable

vmgetie Return current Interrupt Enabled state

vmsetie Set Interrupt Enabled state and return old state

80-NB419-3 Rev. A 27
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

7 Exceptions

7.1 Overview

Exceptions are non-interrupt events, and are not maskable like interrupts.

Exceptions can be precise or imprecise. When a precise exception event is handled, GELR
contains the following value:

■ General exceptions – The address of the instruction packet that caused the
exception

■ Trap exceptions – The packet following the trap instruction

NOTE When an exception occurs as a consequence of a load or store address,
GBADVA contains the address associated with the exceptional operation.

7.2 Exception classes

HVM supports three classes of exceptions, each of which is handled separately:

■ General exceptions

■ Trap exceptions

■ Virtual machine check

80-NB419-3 Rev. A 28
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Exceptions

7.3 General exceptions

General exceptions in HVM correspond closely to precise exceptions in the underlying
Hexagon processor. The general exception value is stored in the GSR.Cause field of the
event record.

Table 7-1 General exceptions

Exception Description GBADVA

0x00 Reserved Undefined

0x01 Precise Bus or Memory Error. Undefined

0x02-0x10 Reserved Undefined

0x11 Execute Protection Violation. Attempt to fetch instructions
from virtual memory page without execute permission.

Undefined

0x12-0x13 Reserved Undefined

0x14 User Access Violation. Attempt to fetch instructions in User
mode from virtual memory page without user access
permission.

Undefined

0x15 Invalid Instruction Packet. Attempt to execute malformed
instruction packet, or one containing reserved or invalid
opcodes or combinations of operations.

Undefined

0x16-1A Reserved Undefined

0x1B Privilege Violation. Attempt to execute privileged instruction
or virtual instruction in User mode.

Undefined

0-x1C Misaligned Program Counter. Attempt to transfer control to
misaligned instruction packet address.

Undefined

0x1D-1F Reserved Undefined

0x20 Load to Misaligned Address Misaligned Load
Address

0x21 Store to Misaligned Address Misaligned Store
Address

0x22 Load Protection Violation. Attempt to load data from virtual
memory page without read permission.

Protected Load
Address

0x23 Store Protection Violation. Attempt to store data to virtual
memory page without write permission.

Protected Store
Address

0x24 Load User Access Violation. Attempt to load data in User
mode from page without user access permission.

Protected Load
Address

0x25 Store User Access Violation. Attempt to store data in User
mode to page without user access permission.

Protected Store
Address

0x26-27 Reserved Undefined

0x28 Cache Conflict. Instruction packet contains a set of
instructions and address modes that are incompatible with
cache attributes of referenced addresses.

Undefined

0x29 Instruction packet with destination register collision Undefined

0x30-0xFF Reserved Undefined

80-NB419-3 Rev. A 29
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Exceptions

7.4 Trap exceptions

Trap exceptions are triggered when a trap0 instruction is executed by an HVM client.

The 8-bit value encoded in the trap0 instruction is stored in the GSR.Cause field of the
event record.

NOTE On trap exceptions GELR points to the packet following the trap instruction,
and not to the trap instruction itself.

7.5 Virtual machine check

Machine Check exceptions indicate the occurrence of potentially unrecoverable failures in
the virtual machine or its underlying hardware.

HVM software can register and handle machine check exceptions to perform emergency
shutdown operations or to attempt recovery. Normal termination of a machine check event
handler is performed with a vmstop virtual instruction (and not vmrte).

If the Guest-mode software has fully handled the failure (for example, the fault has been
isolated to a single User-mode program which can be terminated in isolation), then it can
terminate with a vmrte. However, it is implementation-dependent whether the virtual
machine monitor will allow resumption of pre-event processing.

Table 7-2 Machine check exceptions

Exception Description

0x00 Shutdown. Administrative shutdown of virtual machine

0x01 Invalid Guest mode stack pointer

0x02 Reserved

0x03 Invalid logical page mapping in page table detected at runtime

0x04-0x1F Reserved

0x20 Imprecise Data Abort to underlying hardware

0x21-0x2F Reserved

0x30 NMI to underlying hardware

0x31-0xFFFF Reserved

80-NB419-3 Rev. A 30
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

8 Cache Control

8.1 Overview

The user-level Hexagon cache management instructions (dcfetch, icinva,
dccleaninva, dccleana, dcinva) can be used in HVM clients.

Additional cache control operations that must be handled by the VMM are performed with
the virtual instruction vmcache.

8.2 HVM cache operations

The virtual instruction vmcache is used to perform various cache operations that are
difficult (or inefficient) to perform with the user-level Hexagon cache control instructions
(dcfetch, icinva, dccleaninva, dccleana, dcinva).

vmcache additionally enables cleaninva-like operations over large virtual address areas
to be optimized by the VMM (Section A.2.1).

NOTE vmcache operations are non-destructive of data in the cache.

Table 8-1 lists the HVM-specific cache control operations.

Table 8-1 HVM cache control operations

Operation Description

ICKILL Non-destructive invalidate of entire instruction cache

DCKILL Non-destructive invalidate of entire data cache

L2KILL Non-destructive invalidate of entire L2 data cache

DCCLEANINVA Non-destructive invalidate of virtual address range, starting at
address in R1 for the number of bytes in R2, through full D-cache
hierarchy.

ICINVA Non-destructive invalidate of virtual address range, starting at
address in R1 for the number of bytes in R2, through full I-cache
hierarchy.

IDSYNC Ensure that Instruction cache can observe all data in specified
address range.

NOTE - Similar to DCCLEANINVA followed by ICINVA.

Reserved Reserved (No-op)

80-NB419-3 Rev. A 31
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Cache Control

8.3 Virtual instructions for cache control

Table 8-2 summarizes the virtual instructions used for HVM cache control.

For details on these instructions see Appendix A.

Table 8-2 Virtual instructions for event management

Instruction Description

vmcache Perform one of several HVM cache control operations

80-NB419-3 Rev. A 32
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

9 Memory Management

9.1 Overview

HVM maps virtual addresses 0x0000_0000 to 0xfeff_ffff onto a 32-bit logical address
space, using either a list of translations, or a 1- or 2-level virtual page table scheme. The
translations are visible to and writable by a guest operating system running on HVM.

The VMM is responsible for validating and transforming the information as necessary
when filling the physical processor TLB. In normal operation, translations are loaded on-
demand by the VMM.

9.2 Underlying logical/physical memory

“Logical” addresses are addresses not translated by the HVM MMU. Depending on the
virtual machine implementation and configuration, they may be hardware physical
addresses or addresses mapped by the VMM.

NOTE The ranges of logical memory accessible in HVM may be determined by
platform-specific operations. Attempts to map and access logical addresses
which are not accessible to a virtual machine will result in a protection
violation exception event.

9.3 Linear translations

Virtual-to-logical address translations can be specified by a list of translations. Figure 9-1
shows the format of a list entry. Table 9-1 describes the fields in a list entry.

The VMM traverses the translation list in a linear fashion. The list is terminated by a
translation entry which has all bits set to zero.

NOTE This format requires less space to hold simple memory layouts, and may be
preferable for more highly-embedded Guest-mode environments.

80-NB419-3 Rev. A 33
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Memory Management

Figure 9-1 Translation list entry

Table 9-1 Translation list entry fields

Field Description

Logical Page Logical Page Number that the corresponding Virtual Page maps to

Virtual Page Virtual Page Number that is matched against the load or store address

Size Page size:

■ 000: 4 KB

■ 001: 16 KB

■ 010: 64 KB

■ 011: 256 KB

■ 100: 1 MB

■ 101: 4 MB

■ 110: 16 MB

NOTE - All other values are reserved. Programming an entry with a reserved
pattern results in undefined behavior.

U, R,W, X Permissions:

■ U: User-enable. Set if user accesses are allowed for this page

■ R: read-enable. Set if reads are allowed from this page.

■ W: write-enable. Set if writes are allowed to this page.

■ X: execute-enable. Set if execution is allowed for this page.

If permissions are violated, a precise exception will be raised with the
appropriate cause code (load, store, or fetch).

C Cacheability (Section 9.4.3)

L Link bit.

If this bit is set, the current entry points to next set of translation entries. Bits
31:0 specify address of the next translation in the list; the other bits in the
entry are ignored.

Reserved Reserved field.

Field currently ignored by HVM. Because it may be used in future HVM
versions, the recommended value for this field is 0.

Virtual PageSize

3251

Logical Page

023

L

525463

CRWX

27282931 30

Reserved

24

U

19

-

20

80-NB419-3 Rev. A 34
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Memory Management

9.4 Virtual page table entries

HVM defines two levels of virtual page table. The first level breaks down the virtual
address space into 1020 4MB segments, with each segment represented by a first-level
page table entry (PTE).

A first-level PTE always contains the size of the virtual memory page that is mapped:

■ In the case of pages 4MB or greater, the first-level entry contains the translation
and permissions information for the page.

■ For pages less than 4MB, the first-level entry contains a pointer to an array of
second-level entries.

A first-level PTE encodes the entry type and page size in its 3-bit S field (Figure 9-3). The
definition of the remaining bits varies according to the entry type.

Figure 9-2 Page table entry (generic)

Table 9-2 lists the entry types for an L1 page table entry.

If the size specified in S is greater than or equal to 4M, a second level of page table is not
necessary to define the mapping: the entry defines the page mapping and permissions
directly. For smaller pages, the entry is interpreted as a directory entry which points to a
second-level table.

NOTE Referencing a virtual address which resolves to a PTE marked as invalid (111)
results in a protection violation exception event.

Because the granularity of the first-level page table is 4MB, the PTE for a
16MB virtual page must be replicated for each of the 4 entries in the first-
level page table that correspond to the 16MB virtual address range.

Table 9-2 L1 page table entry types

S Field Value Entry Type Page Size L2 Entries Address Bits

000 Page Directory Entry 4KB 1024 31:12

001 Page Directory Entry 16KB 256 31:10

010 Page Directory Entry 64KB 64 31:8

011 Page Directory Entry 256KB 16 31:6

100 Page Directory Entry 1MB 4 31:4

101 Page Table Entry 4MB N/A N/A

110 Page Table Entry 16MB N/A N/A

111 Invalid Invalid N/A N/A

031

S

2

80-NB419-3 Rev. A 35
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Memory Management

9.4.1 Page directory entries

A PTE contains (in addition to the S field) a pointer to a second-level page table. The most
significant bits of the entry are used as the most significant bits of the logical address of
the L2 table.

Figure 9-3 shows the format of a page directory entry.

Figure 9-3 Page directory entry

NOTE L2 tables must be aligned to the size of the table.

9.4.2 Page table entries

PTEs are used to define the virtual-to-logical translation for a specific memory page.

Instead of a pointer to a second-level page table, a PTE can specify a 4MB or 16MB
translation at the L1 level. Figure 9-4 and Figure 9-5 show the corresponding entry
formats (with the S field set to specific values per Table 9-2).

Figure 9-4 Page table entry (L1 – 4MB)

Figure 9-5 Page table entry (L1 – 16MB)

Second-level page tables specify translations for a contiguous 4MB of the address space.
Each entry has the same translation size. This uniform size is specified at the first level.
Figure 9-6 shows a second-level PTE.

Figure 9-6 Page table entry (L2)

L2 Table Address

031

- S

4 3 2

Logical Page

022

CRWX

891031 11 6

U -T 5

5 4 3 21221

-

Logical Page

024

CRWX

891031 11 6

U -T 6

5 4 3 21223

-

Logical Page

012

CRWX

891031 11 6

U -T -

5 4 3 2

80-NB419-3 Rev. A 36
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Memory Management

Table 9-3 describes the fields in a PTE.

NOTE For L1 entries, the size field must be set correctly for determining page size.
For L2 entries, the size field is ignored and may be used by software.

If none of the R, W, or X bits are set, the virtual map is considered invalid, and
any access (load, store, fetch) results in a Page Fault Exception event.

Table 9-3 Page table entry fields

Bits Mnemonic Description

31:12 LPN Logical Page Number.

High-order bits of page-aligned logical address corresponding to mapped
page. The number of bits actually used depends on specified page size.
See Table 9-4.

11 X Execute Permission.

HVM has execute access to page. Attempts fetch instructions from an
address within page causes an Execute Permission Exception event if the X
bit is cleared (0).

10 W Write Permission

HVM has write access to page. Attempts to store data to an address within
the page causes a Write Permission Exception event if W bit is cleared (0).

9 R Read Permission

HVM has read access to page. Attempts to load data from an address within
the page causes a Read Permission Exception event if the R bit is cleared
(0).

8:6 C Cache Attributes

See Section 9.4.3.

5 U User Mode

If the bit is set (1), User mode programs may reference the page. If it is
cleared (0), read, write, or execute references in User mode result in a User
Access Exception event.

4 T Trusted

Behavior depends on the system trust model. Recommended setting is
cleared (0).

Varies – Unused. Ignored by HVM.

80-NB419-3 Rev. A 37
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Memory Management

NOTE HVM ignores any LPN bits that are not required to address an aligned page of
the specified size.

9.4.3 Cache attributes

In a page table entry (Section 9.4.2) the C field controls the cache attributes of the virtual
page. The cache behavior is undefined if virtual aliases map the same logical page with
different cache attributes.

C is relevant only for “terminal” PTEs which resolve to a target logical page address.

The cache attribute Device Access should be used whenever loads or stores have side
effects.

The cache attribute Uncached Memory does not allow memory to be cached. However,
the implementation is allowed to replay loads and stores.

Implementors Note: The HVM implementation is free to replay loads and stores for
pages assigned Uncached Memory. (The Hexagon processor will in fact do this.)

Table 9-4 LPN bits used as function of page size

Page SIze LPN Bits Used

4KB 31:12

16KB 31:14

64KB 31:16

256KB 31:18

1MB 31:20

4MB 31:22

16MB 31:24

Table 9-5 Cache attribute types

C Field Value L1 Cache Policy L2 Cache Policy

0 Write-back Non-cacheable

1 Write-through Non-cacheable

2 Reserved

3 Reserved

4 Device Access

5 Write-through Cacheable

6 Uncached Memory

7 Write-back Cacheable

8-15 Reserved

80-NB419-3 Rev. A 38
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Memory Management

NOTE To maintain compatibility with future HTM versions, the reserved cache
attribute settings should not be used.

HVM may choose to reduce the cacheability of a translation for reasons of
correctness or Quality-of-Service.

9.5 Setting new memory maps

The virtual instruction vmnewmap establishes a new logical-to-virtual memory map for
HVM.

vmnewmap accepts as arguments the logical addresses of either a segment table
(Section 9.4) or linear translation list (Section 9.3). The instruction immediately following
vmnewmap executes with the new memory map in effect.

Implementors Note: If an invalid page table is passed to vmnewmap, the HVM
implementation is free to determine whethervmnewmap returns with a value indicating
failure, or whether a subsequent attempt to de-reference an address with an invalid
mapping causes a virtual machine check. For more information see Section 7.5.

9.6 Flushing stale memory maps

The virtual instruction vmclrmap flushes a possibly-stale virtual mapping.

vmclrmap accepts as arguments a range of virtual addresses. It causes copies of virtual
address translations to be purged from the virtual machine (including the TLB) for the
specified range of virtual addresses.

Subsequent accesses to the memory range use the values in the memory map tables.

9.7 Virtual instructions for memory management

Table 9-6 summarizes the virtual instructions used for memory management.

For details on these instructions see Appendix A.

Table 9-6 Virtual instructions

Instruction Description

vmnewmap Register new logical-to-virtual memory map.

vmclrmap Flush a possibly-stale virtual mapping.

80-NB419-3 Rev. A 39
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

10 Processor Resource Management

10.1 Overview

HVM supports the following facilities for processor resource management:

■ Fine-grained system timer

■ Ability to suspend processor execution

■ Ability to create new virtual processors

10.2 Timer

HVM supports a fine-grained timer which is accessed through the virtual instructions
vmgettime and vmsettime:

■ vmgettime returns a 64-bit value representing the current time.

■ vmsettime resets the timer to the 64-bit value passed as an argument.

Implementors Note: The HVM implementation is free to define whether the timer
corresponds to CPU time or wall-clock time. For example, if a Virtual Machine Monitor
schedules out a virtual CPU, the timer may or may not continue to increment while the
virtual CPU is not executing.

80-NB419-3 Rev. A 40
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Processor Resource Management

10.3 Processor suspension

Guest-mode software on HVM can suspend the execution of a virtual processor in two
ways:

■ The virtual instruction vmwait

■ The virtual instruction vmyield

vmwait suspends execution pending an interrupt event. After the next event is handled,
the virtual instruction vmrte that terminates the event servicing will result in execution
resuming at the instruction after the vmwait instruction.

vmyield suspends execution temporarily, independently of any virtual processor events. It
auses the VMM to schedule other virtual processors at the same or higher priority, without
the need for pre-emption.

NOTE It is recommended that the guest operating system yield while attempting to
acquire a spinlock. This ensures that a virtual processor holding the spinlock
has an opportunity to execute.

10.4 Processor creation

Guest-mode software can create new instances of virtual processors with the virtual
instruction vmstart. The newly-created instances execute concurrently with the existing
processor instances.

A new virtual processor instance begins execution in Guest mode, fetching instructions
from the address specified as an argument to vmstart. The new instance begins execution
with the same memory map as the virtual processor instance that executed the vmstart.

Each virtual processor has a unique 32-bit identifier, which can have values in the
following range:

0 .. (max_number_of_supported_virtual_processors - 1)

A virtual processor ID value can never have the value -1 (all ones). The initial virtual
processor instance has a virtual processor ID of zero. Software running on a virtual
processor can access its virtual processor ID by executing the virtual instruction vmvpid.

The inverse of vmstart is the virtual instruction vmstop. When a virtual processor
executes vmstop, the following events occur:

■ Execution of the virtual processor is terminated.

■ The instruction following the vmstop is not issued.

■ The resources associated with the virtual processor are freed and made available
for use by any new virtual processor instance created by a subsequent vmstart
operation.

80-NB419-3 Rev. A 41
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification Processor Resource Management

10.5 Virtual instructions for processor management

Table 10-1 summarizes the virtual instructions used for processor resource management.

For details on these instructions see Appendix A.

Table 10-1 Virtual instructions for processor management

Instruction Description

vmgettime Get the 64-bit virtual processor timestamp

vmsettime Set virtual processor timestamp value.

vmwait Wait on an interrupt event.

vmyield Voluntarily reschedule virtual processor resources.

vmstart Start a new, concurrently executing virtual
processor.

vmstop Terminate virtual processor execution.

vmvpid Get virtual processor ID.

80-NB419-3 Rev. A 42
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

11 Trust Model

11.1 Overview

The HVM environment provides a trust model which is distinct from, but interoperable
with the trust model of other cores in the system.

80-NB419-3 Rev. A 43
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

12 Debug

12.1 Overview

HVM debug support must reconcile two factors:

■ The development requirement for simple and effective debugging of programs
executing on the virtual machine.

■ The operational requirement for security and isolation.

12.2 User-mode software debug

User-mode software can be debugged using Guest-mode facilities. For example:

■ Generating page faults on memory references

■ Inserting trap0 instructions for breakpoints and single-step operation

These facilities are sufficient to implement a UNIX-style ptrace capability for the guest
operating system.

12.3 Guest-mode software debug

The VMM can use the Hexagon processor’s supervisor-mode facilities to debug User-
mode code. These same process-level facilities can be used to debug Guest-mode
software.

Implementors Note: The HVM implementation is free to determine whether the VMM
accepts debugging commands directly from some operator communications channel (such
as a serial port or a JTAG interface), or whether the VMM provides an API to trusted-
debug-agent module which translates from operator/host debugger commands on the
communications channel and VMM debug API functions.

Under no circumstances, however, can an untrusted VMM or operator debug agent
generate trusted load or store cycles, either directly or indirectly, through a trusted system
that is being debugged.

80-NB419-3 Rev. A 44
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

A HVM Instructions

A.1 Overview

HVM provides virtual instructions and events which control the transitions between User
and Guest modes, and which support the implementation of protected, multi-user, multi-
tasking operating systems that run on HVM.

Virtual instructions are extensions to the Hexagon instruction set – they invoke HVM
operations that cannot be performed by a regular Hexagon instruction.

This appendix provides detailed descriptions of the HVM virtual instructions. The
instructions are listed alphabetically.

Table A-1 summarizes the virtual instructions.

80-NB419-3 Rev. A 45
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

Table A-1 HVM virtual instruction summary

Mnemonic Function Encoding Inputs Outputs

vmversion Request Virtual
Machine Version

trap1(#0) R0 = Requested VM Version R0 = Configured VM Version

vmrte Return from Event trap1(#1) Event Record in g3-g0 N/A

vmsetvec Set event vector trap1(#2) R0 = Vector Table Address R0 = 0 on success, otherwise -1

vmsetie Set interrupt
enable state

trap1(#3) R0 1 to enable, 0 to disable R0 = Previous enable state in bit 0

vmgetie Get interrupt
enable state

trap1(#4) N/A R0 = Enable state in bit 0

vmintop Interrupt
Operation

trap1(#5) R0 = Interrupt Op
R1-R4: Depends on Op

R0 depends on Op.

vmclrmap Clear virtual
memory map

trap1(#10) R0 = Starting VA
R1 = Length in bytes

R0 = 0 on success, otherwise -1

vmnewmap Set new virtual
memory map

trap1(#11) R0 =Logical address of new
segment table
R1 =Type of translations

R0 = 0 on success, otherwise
negative error code

vmcache Virtual Machine
cache control

trap1(#13) R0 = Operation to be performed
R1 = Starting virtual address
R2 = Length in bytes

R0 = 0 on success, otherwise -1

vmgettime Get Virtual
Machine Time

trap1(#14) N/A R0 = least significant 32 bits of
timestamp
R1 = most significant 32 bits of
timestamp

vmsettime Set Virtual
Machine time

trap1(#15) R0 = least significant 32 bits of
timestamp
R1 = most significant 32 bits of
timestamp

N/A

vmwait Wait for next
interrupt

trap1(#16) N/A R0 = Interrupt number of re-
activating event

vmyield Voluntarily
reschedule virtual
processor

trap1(#17) N/A N/A

vmstart Create new virtual
processor
instance

trap1(#18) R0 = Starting execution address
R1 = Starting stack pointer

R0 = Virtual processor number of
new virtual processor on success,
otherwise -1

vmstop Terminate current
virtual processor
instance

trap1(#19) N/A N/A

vmvpid Obtain virtual
processor ID

trap1(#20) N/A R0 = Virtual processor number of
virtual processor executing the
instruction

vmsetregs Set Guest
Registers

trap1(#21) R0-3 hold G0-3 values N/A

vmgetregs Read Guest
Registers

trap1(#22) N/A R0-3 hold G0-3 values.

80-NB419-3 Rev. A 46
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2 Instruction properties

HVM virtual instructions have the following properties:

■ They are privileged, and can be executed only in Guest-mode software. If
executed in User mode, they will generate a privilege violation exception.

■ By convention they take their inputs (if any) from the Hexagon processor registers
R0–R4, and return their outputs in registers R0 and R1, as necessary.

■ They are solo instructions (as defined in the Hexagon Programmer’s Reference
Manual), and thus cannot be grouped with other instructions in an instruction
packet.

■ They are generally implemented as Hexagon traps which switch the processor to
its Monitor mode.

80-NB419-3 Rev. A 47
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.1 VMCACHE

Perform cache maintenance operations which are either impossible or inefficient using the
native cache management instructions.

Syntax

vmcache

Registers

Type: JR (slot 2)

Exceptions

■ Store protection exception on range-based operations if virtual address range
contains pages without write permission.

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Register In/Out Description

R0

In

Cache operation to perform:

#0: ICKILL - Nondestructive Invalidate of entire instruction cache

#1: DCKILL - Nondestructive invalidate of entire data cache

#2: L2KILL - Nondestructive invalidate of entire L2 data cache

#3: DCCLEANINVA - Nondestructive invalidate of the range of virtual
addresses starting at the address in R1 for the number of bytes in R2
through the full D-cache hierarchy.

#4: ICINVA - Nondestructive invalidate of the range of virtual addresses
starting at the address in R1 for the number of bytes in R2 through the
full I-cache hierarchy.

#5: IDSYNC - Ensures that Instruction cache can observe all data in the
specified range; similar to DCCLEANINVA followed by ICINVA.

other: Reserved (No-Op)

Out
0: Operation successful

-1: Operation unsuccessful

R1 In Starting virtual address for range-based operations

R2 In Byte count for range-based operations

80-NB419-3 Rev. A 48
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

Encoding

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 1 - vmcache -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 1 - - - 1 0 1 - -

80-NB419-3 Rev. A 49
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.2 VMCLRMAP

Flush possible stale virtual mapping.

Syntax

vmclrmap

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R0

In

Starting virtual address.

Purge MMU state for the virtual address range starting at the address in R0,
and covering the number of bytes in R1.

NOTE - This would typically follow a modification to an active page table.

Out
0: Operation successful

-1: Operation unsuccessful

R1 In Byte count

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 1 - vmclrmap -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 1 - - - 0 1 0 - -

80-NB419-3 Rev. A 50
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.3 VMGETIE

Get virtual processor interrupt enable value.

Syntax

vmgetie

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R0 Out
0: Interrupts disabled on virtual processor

1: Interrupts enabled on virtual processor

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 0 - vmgetie -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 0 - - - 1 0 0 - -

80-NB419-3 Rev. A 51
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.4 VMINTOP

Operate on virtual interrupt controller.

Syntax

vmintop

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Register In/Out Description

R0

In

Interrupt operation to perform:

0: VMINTOP_NOP: Do nothing

1: VMINTOP_GLOBEN: Global Enable

2: VMINTOP_GLOBIDIS: Global Disable

3: VMINTOP_LOCEN: Local Enable

4: VMINTOP_LOCDIS: Local Disable

5: VMINTOP_AFFINITY: Set Interrupt Affinity

6: VMINTOP_GET: Take Next Interrupt

7: VMINTOP_PEEK: Query which interrupt is next, without taking

8: VMINTOP_STATUS: For an interrupt, return pending and enablement
status

9: VMINTOP_POST: Post an interrupt into interrupt controller

10: VMINTOP_CLEAR: Clear an interrupt without taking it

Out

Non-zero value for failure for operations 1-5 and 9-10.

R0=6:GET: returns 0 if interrupt taken, -1 if not taken.

R0=7: PEEK: returns highest priority pending/enable interrupt, otherwise -1.

R0=8: STATUS: 0 if pending, 1 if local enable. 2: global enable. -1 on failure.

R1 In Interrupt that the operation acts upon.

R2 In Only used if R0 = 5: the virtual processor to take the interrupt.

80-NB419-3 Rev. A 52
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

Encoding

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 0 - vmintop -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 0 - - - 1 0 1 - -

80-NB419-3 Rev. A 53
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.5 VMGETTIME

Get 64-bit virtual processor timestamp.

Syntax

vmgettime

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R0 Out Least-significant 32 bits of virtual processor timestamp

R1 Out Most-significant 32 bits of virtual processor timestamp

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 1 - vmgettime -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 1 - - - 1 1 0 - -

80-NB419-3 Rev. A 54
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.6 VMNEWMAP

Establish new logical-to-virtual memory map.

The virtual machine’s MMU is reprogrammed to discard the previous virtual-physical
mappings in effect prior to the vmnewmap instruction and use the mapping described by the
page tables whose segment table (L1 page table) begins at the address in R0. If the
translations map logical addresses that are outside the virtual machine’s legal logical
address space, it is implementation specific whether the operation fails, returning a non-
zero error code, or whether a machine check event will be generated when an illegal entry
is encountered at run time. VMM implementations may not implement all translation table
types. An unsupported translation type will result in an error and translations will not be
changed.

Syntax

vmnewmap

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

■ Machine check event if invalid page table subsequently detected at run time by a
virtual machine implementation which does not do full page table validation at
vmnewmap time.

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

■ The virtual machine instruction following the vmnewmap operation will be the
instruction at the address following the vmnewmap’s address in the original map,
as translated by the new map. Care must be taken in replacing the mapping of
guest OS pages containing vmnewmap instructions.

Register In/Out Description

R0

In Logical address of new MMU segment table.

Out
0 if operation was successful, otherwise an implementation-specific negative
error code.

R1 In
0: Linear list of translations

1: Set of page tables

80-NB419-3 Rev. A 55
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

Encoding

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 1 - vmnewmap -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 1 - - - 0 1 1 - -

80-NB419-3 Rev. A 56
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.7 VMRTE

Return from event service

■ PC = G0 (GELR)

■ Interrupt Enable State = G1[30] (GSR.IE)

■ User Mode = G1[31] (GSR.UM)

■ if (User Mode) swap(R29,G2) (GOSP)

Syntax

vmrte

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo Instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R29 In/Out Stack pointer that may be swapped with GOSP

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 0 - vmrte -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 0 - - - 0 0 1 - -

80-NB419-3 Rev. A 57
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.8 VMSETIE

Set virtual processor interrupt enable value.

Syntax

vmsetie

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R0

In
1 (or any odd value): Enable interrupts to the virtual processor

0 (or any even value): Disable interrupts to the virtual processor

Out
0: Interrupts were previously disabled on the virtual processor

1: Interrupts were previously enabled on the virtual processor

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 0 - vmsetie -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 0 - - - 0 1 1 - -

80-NB419-3 Rev. A 58
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.9 VMSETTIME

Set virtual processor timestamp value.

Syntax

vmsettime

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo Instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R0 In Least-significant 32 bits of virtual processor timestamp

R1 In Most-significant 32 bits of virtual processor timestamp

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 1 - vmsettime -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 1 - - - 1 1 1 - -

80-NB419-3 Rev. A 59
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.10 VMSETVEC

Set event handler vector table for events.

Syntax

vmsetvec

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo Instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R0

In Vector table address

Out
0: Success

-1: Failure

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 0 - vmsetvec -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 0 - - - 0 1 0 - -

80-NB419-3 Rev. A 60
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.11 VMSTART

Start a new, concurrently-executing virtual processor.

If resources are available, a new virtual processor is allocated to begin execution in guest
mode with the instruction address contained in R0. The stack pointer (R29) of the new
virtual processor is set to the value of R1 of the virtual processor executing the vmstart.
The virtual processor number of the new virtual processor is returned in R0 of the virtual
processor executing the vmstart.

If resources are unavailable, the operation fails, and a value of -1 is returned in R0.

Syntax

vmstart

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

■ If the initial instruction virtual address is not valid, an execute protection violation
exception event is taken by the new virtual processor.

Encoding

Register In/Out Description

R0

In Virtual address of first instruction to be executed by new virtual processor

Out
If successful, the unique identifier number of the newly created virtual
processor.

If unsuccessful, a value of -1.

R1 In Virtual address of initial top of stack for new virtual processor

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 2 - vmstart -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 1 0 - - - 0 1 0 - -

80-NB419-3 Rev. A 61
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.12 VMSTOP

Terminate virtual processor execution.

The virtual processor executing the vmstop instruction ceases execution, and its resources
are made available for future vmstart operations.

Syntax

vmstop

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Encoding

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 2 - vmstop -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 1 0 - - - 0 1 1 - -

80-NB419-3 Rev. A 62
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.13 VMVERSION

Request and obtain the virtual machine version

Syntax

vmversion

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

■ The version corresponding to this spec is 0x0000_0700.

Encoding

Register In/Out Description

R0
In Requested version for HVM to conform to

Out Virtual machine version that is conformed to

R1 In Most-significant 32 bits of virtual processor timestamp

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 0 - vmversion -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 0 0 - - - 0 0 0 - -

80-NB419-3 Rev. A 63
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.14 VMVPID

Get virtual processor identification number of the current processor.

Syntax

vmvpid

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R0 Out Virtual processor identification number of current processor

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 2 - vmvpid -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 1 0 - - - 1 0 0 - -

80-NB419-3 Rev. A 64
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.15 VMWAIT

Wait on an interrupt event.

The virtual processor issuing the vmwait suspends execution until a configured and
unmasked interrupt request is presented to the virtual processor. If interrupts are disabled,
execution resumes with the instruction following the vmwait. If interrupts are enabled, the
interrupt is serviced with the GELR value in the event record containing the address of the
instruction following the vmwait, so that normal execution resumes after a vmrte is
executed with the interrupt event record on the top of the stack. In either case, when
execution resumes, R0 contains the interrupt number of the interrupt which terminated the
wait. If more than one configured and unmasked interrupt is detected before execution
resumes, it is implementation dependent which of the interrupts will be represented in R0.

Syntax

vmwait

Registers

Type: JR (slot 2)

Type

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo Instruction. It must not be grouped with other instructions in a
packet.

Encoding

Register In/Out Description

R0 Out
Interrupt number associated with the interrupt request that terminated the
vmwait.

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 2 - vmwait -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 1 0 - - - 0 0 0 - -

80-NB419-3 Rev. A 65
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Hexagon Virtual Machine Specification HVM Instructions

A.2.16 VMYIELD

Voluntarily reschedule virtual processor resources.

If other virtual processors at the same or higher priority are runnable but waiting on
processor resources, suspend execution of the issuing virtual processor and schedule the
virtual processor with the highest priority.

Syntax

vmyield

Type: JR (slot 2)

Exceptions

■ Privilege violation exception if executed in User mode

Notes

■ This is a solo instruction. It must not be grouped with other instructions in a
packet.

Encoding

31 23 22 16 15 14 13 12 8 7 5 4 2 1 0

VM (trap1) - Parse - VM Group 2 - vmyield -

0 1 0 1 0 1 0 0 1 - - - - - - - P P - 0 0 0 1 0 - - - 0 0 1 - -

80-NB419-3 Rev. A 66
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

B Determining HVM Environment

B.1 Overview

Guest-mode software can poll the VMM for the current HVM version to determine if they
are version-compatible.

B.2 Accessing environment version

When Guest-mode software begins execution, it may need an efficient way to determine
the HVM environment provided by the VMM. This can be done with the virtual
instruction vmversion, which returns a value specifying the virtual machine environment
version that is supported by the VMM.

This enables the guest software to request a virtual machine environment version that it
has been verified to be compatible with.

This feature enables the VMM to support guests that may only support an older HVM
specification. Alternatively, it enables guests to support Monitors that only support older
HVM specifications.

NOTE Further communication about the system configuration will likely be
beneficial for the guest, but the definition of this feature is TBD.

The version number associated with the current VM specification is
0x0000_0700.

B.3 Virtual instructions for determining environment

Table B-1 summarizes the virtual instructions used for determining the HVM
environment.

For details on these instructions see Appendix A.

Table B-1 Virtual instructions for determining environment

Instruction Description

vmversion Return the virtual machine version

	1 Introduction
	1.1 Overview
	1.2 Architecture
	1.3 Modes
	1.4 Instructions and events
	1.5 Virtual privileged resource model
	1.6 Using this manual
	1.7 Terminology
	1.8 Notation

	2 HVM User Mode
	2.1 Overview
	2.2 Restrictions
	2.2.1 Memory addressing

	3 HVM Guest Mode
	3.1 Overview
	3.2 Guest mode capabilities
	3.2.1 Event handling
	3.2.2 Interrupts
	3.2.3 Exceptions
	3.2.4 Cache control
	3.2.5 Memory management
	3.2.6 Processor resource management

	3.3 Restrictions
	3.3.1 Memory addressing

	4 Initial State
	4.1 Overview
	4.2 Virtual processor
	4.3 Registers
	4.4 Memory
	4.5 Initial memory map

	5 Event Model
	5.1 Overview
	5.2 Event model
	5.3 Event registers
	5.3.1 GELR
	5.3.2 GSR
	5.3.3 GOSP
	5.3.4 GBADVA

	5.4 Event types
	5.5 Event vector registration
	5.6 Event handler return
	5.7 Virtual instructions for event management
	5.8 Programmers note

	6 Interrupts
	6.1 Overview
	6.2 Virtual interrupt controller
	6.3 Interrupt type and polarity
	6.4 Interrupt masks
	6.5 Interrupt acknowledgement
	6.6 Interrupt enable
	6.7 Virtual instructions for interrupt management

	7 Exceptions
	7.1 Overview
	7.2 Exception classes
	7.3 General exceptions
	7.4 Trap exceptions
	7.5 Virtual machine check

	8 Cache Control
	8.1 Overview
	8.2 HVM cache operations
	8.3 Virtual instructions for cache control

	9 Memory Management
	9.1 Overview
	9.2 Underlying logical/physical memory
	9.3 Linear translations
	9.4 Virtual page table entries
	9.4.1 Page directory entries
	9.4.2 Page table entries
	9.4.3 Cache attributes

	9.5 Setting new memory maps
	9.6 Flushing stale memory maps
	9.7 Virtual instructions for memory management

	10 Processor Resource Management
	10.1 Overview
	10.2 Timer
	10.3 Processor suspension
	10.4 Processor creation
	10.5 Virtual instructions for processor management

	11 Trust Model
	11.1 Overview

	12 Debug
	12.1 Overview
	12.2 User-mode software debug
	12.3 Guest-mode software debug

	A HVM Instructions
	A.1 Overview
	A.2 Instruction properties
	A.2.1 VMCACHE
	A.2.2 VMCLRMAP
	A.2.3 VMGETIE
	A.2.4 VMINTOP
	A.2.5 VMGETTIME
	A.2.6 VMNEWMAP
	A.2.7 VMRTE
	A.2.8 VMSETIE
	A.2.9 VMSETTIME
	A.2.10 VMSETVEC
	A.2.11 VMSTART
	A.2.12 VMSTOP
	A.2.13 VMVERSION
	A.2.14 VMVPID
	A.2.15 VMWAIT
	A.2.16 VMYIELD

	B Determining HVM Environment
	B.1 Overview
	B.2 Accessing environment version
	B.3 Virtual instructions for determining environment

